UniPress Software, Inc.

Suite 312

2025 Lincoln Highway
€dison, NJ 08817
201-985-8000

Telex 709418

Brief Unix Manual

UniPressSoltwore

Your Leading Soure for UNIX Software

2025 Lincoln Hwy.
Edison, NJ 08817
201-985-8000
Telex: 709418

Installation Instructions
and
Brief Introduction to Commands and Keys

The UNIX V Operating System on the Apple Lisa (Model 2)
for Software Shipped on Microdiskettes

Copyright 1984 UniPress Software, Inc. (E2)

8/84 HOW TO INSTALL UNIX ON THE APPLE LISA Page 1

Thank you for purchasing the UniPress UniPlus+ UNIX V operating system
-~ for the Apple Lisa Model 2. We hope you find it useful and enjoyable.

You have received manuals, a set of Unix 3 1/2-inch diskettes, and
optionally other floppies containing application software. Power up
the Lisa and your hard disk. Always wait for all the equipment to be
ready before proceeding with booting!

Here is some general information about our implementation:

When the Lisa is powered-up, or restarted by hitting the round
reset button on the back, the computer goes through a self-test
procedure. If there is a built-in hard disk or a ProFile in the
Parallel Device outlet, the Lisa will automatically attempt to
boot from there. Thus, if you have the Apple Lisa Office system
loaded ontc the built-in drive, and Unix on a Sunol, for
example, the Lisa will always try to boot the Office system! To
avoid this, you MUST hit the space bar repeatedly as soon as
the "CPU" self-test commences. Then by pointing the mouse you
can boot from floppy disk.

On any Unix system it is a VERY good idea to perform periodic
"feok"s. fsck determines if the filesystem is in good order,
and will f£ix many problems.

When powering-down we suggest that you issue the "sync" command

twice, and hit the lit power button on the front right of the

panel. (Hitting this button automatically performs the "sync"

commands, but we advise you to do them manually anyway.) The
e computer will power-off.

O

If you want to re-boot without powering-down, issue two "sync"
commands, and then hit the round "reset™ button which is near
the card cage on the back of the machine. The Lisa will
automatically begin its startup procedure and self-test.

The Lisa "apple" key with the picture of the Apple is the Unix
Control Key, the CLEAR key on the keypad is the Unix DEL
{delete) key, and the OPTION key is the UNIX ESC (escape) key.

If you are a Unix devotee, you might like to put paste-labels
on the keys teo indicate the ESC, etc. keys.

By the way, the Lisa terminal is mostly like a vVT100. A Tyel®
(for VThisa)} entry has been placed into the termcap.

Throughout this document there are references to "Hit return™
and <CR>. This means the Return key should be pressed.
The included devices in this Unix are:

/dev/s0a 800 block full Sony 3-1/2" disket!
/dev/s0b 599 block Sony diskette starting
at block 201
NOTE: To format diskettes enter:

diskformat /dev/rsla
To make a filesystem on a diskette:
mkfslb /dev/s0a 800

Tt Copyright 1984 UniPress Software, Inc. (E2)

8/84 HOW TQ INSTALL UNIX ON THE APPLE LISA Page 2

/dev/pla Full 1l0-meg internal disk,._
{less some swap area.) @ 3

/dev/p0db Swap area on ProFile or .7
internal l0-megy.

/dev/plc 5-meg ProFile (less swap)

/dev/cda Full Corvus/Sunol 20-megq.

/dev/cdb Swap area for above.

/dev/cdc Balance of Corvus/Sunol if

larger than 25-meg.

NOTE: The second digit indicates where the
device is located. "0" (as in pOc)
indicates the built-in port -- either the
in-board Widget drive, or a disk plugged
into the "Parallel" slot on the lower back
of some Lisas.

Ports 1 and 2 are the bottom and top of the
left (as seen from the back) parallel card;
ports 4 and 5 are the middle card; ports 7
and 8 are the slots for a righthand card.

IF YOU EVER NEED TO RESTORE FILES FROM YHE MASTER FLOPPY
DISKETTES, it is easy to do. The "C" diskette contains a few
programs. These are all in filesystem format, which means that
you must mount them, and then use the ¢p program to get your
file. Example:
mount /dev/s0a /t
1s -1 /t/bin -,
cp /t/bin/eject /tmp
umount /dev/s0a

N

All other diskettes are in tar format.
tar xvE /dev/rsCa /bin/eject

This document is organized into sections. They are:

Section Purpose
Serialize your Lisa You must do this as the first step
when you receive your software.
INSTALLING INTERNAL DISK For users who have either the
OR PROFILE SYSTEMS internal 10-meg or ProFile hard
disks.
INSTALLING CORVUS/SUNOQL For users who have Corvus or Sunol
DISK SYSTEMS disks.
WHAT TO DO AFTER INSTALLING Explains how to use the system on an

on-going basis.

Copyright 1984 UniPress Software, Inc. (E2)

8/84 HOW TC INSTALL UNIX ON THE APPLE LISA Page 3

) Serialize your Lisa

Prior to use of the Unix software, you must "serialize® the system.

A. Position the boot/serialization ("A") dJdiskette so that the
write-protect hole is on the left side near you, and the notched
corner of the diskette iz on the far righthand side. Push the
floppy intc the slot GENTLY.

B. Press the reset button on the back of the Lisa. This is the black
round button on the bottom near the card cage. The Lisa will
begin its self-test when you hit the reset button.

c. indicate that you want to boot from the £loppy.

D. You will be asked whether you want to Serialize. Indicate that you
want to serialize by typing tyn, You will see several
"Serialization Numbers". Call UniPress Software at 201-985-8000
or 800-222-0550 {ocutside NJ). Read the numbers to UniPress. We
will give you a "Authorization Number", which is a 7 or
8~character sequence. (NOTE: any letters in the sequence must be
keyed as lower casel) Save the Authorization Number, since you may
need it later in the installation process, or possibly in the
future. We suggest you write it here:

Authorization Number:

Input the Authorization number. The serialization diskette will
be transformed into a boot diskette, which only functions on this
specific Lisa. For the balance of this document, we refer to this
floppy as the boot diskette.

Go on to the "INSTALLING ..." sections.

Copyright 1984 UniPress Software, Inc. {E2}

e

8/84

HOW TO INSTALL UNIX ON THE APPLE LISA Page 4

INSTALLING INTERNAL DISK OR PROFILE SYSTEMS

If you are using a ProFile, cable it intc the "Parallel Device™
slot on the lower rear of the chassis if your machine has one.
(This slot is horizontal.) Otherwise, you must insert a Lisa
Parallel card into the middle of the +three slots in the card
cage. Then plug the ProFile into the lower of the two outlets.
Power up the ProFile and wait €for it to be ready (solid red
light) before using it!

Boot the Lisa from floppy. (The "A" diskette from the previocus
step.)

The Lisa will go into its Unix initialization process and will
put a new display on the screen, which says, "Standalone boot".
A colon {3;) will appear on the next line.

enter "copy" after the prompt. This copies the boot program from
the diskette onto your hard disk.

The Lisa will prompt "Enter device to copy from", and you should
hit return.

The diskette will be ejected soon, and you will be prompted:
"Enter device to copy to:"

You respond with "w(x,0)}" where "x" has the value as seen below:

ProFile in 0 port

{the "Parallel Port") 0
Profile in 4 port 4
Builtin 10-meg disk 0 ex: w(0,0)
You will see activity on the hard disk (lights blinking) and then
the Lisa will then reply: "Enter file to boot from"

Re-insert the boot {("A") diskette and enter "sunix". after a
while you will be asked to insert the "root filesystem", which is
the "C" diskette. Do so, and then hit return.

You will be asked for the location of the "swap" area. Indicate
"p" ., Then provide the same number as you did for the previous
step. {eg. 0, or 4) when asked for the number.

Unix will now start operation! You will see the "#" Unix prompt.
However, it is a very limited system at this point.

Type "./install®", and answer the questions. This will take
approximately 7 minutes. Then enter “eject" to eject the
diskette.

Re-boot as requested, by issuing "sync" twice and hitting the
round reset button on the back of the machine.

Copyright 1984 UniPress Software, Inc. (EZ)

St

8/84 HOW TO INSTALL UNIX ON THE APPLE LISA Page 5

_F. Boot up from floppy "A", as before. Then input the indicated
3 entry from this table when you see the colon (:) prompt:
b

ProFile in 0 port

(the "Parallel port") "unix"
Internal 10-meg Tunix"
ProFile in 4 port "eject”, then insert "B"

diskette, and enter "uaix.w4"
G. Once again, when you get the "$" Unix prompt, enter "./install".
Enter "eject" to eject the diskette,
There is one last step to perform, which is the loading of the

Unix files from diskette. Please issue the "./install_it"
command to load in the rest of the Unix System.

H. Proceed directly to WHAT TO DO AFTER INSTALLATION.

%
g

Copyright 1984 UniPress Software, Inc. (E2)

8/84

HOW TO INSTALL UNIX ON THE APPLE LISA Page 6

INSTALLING CORVUS/SUNOL DISKS
Connect the disk to the Lisa with the special flat cable:

Put the flat ribbon end of the cable into the slot labelled
"PROCESSOR" on the Corvus. On the Sunol there is only one
receptacle. On the Corvus TBE REP SIDE OF THE CABLE MUST FACE
TOWARDS THE POWER CORD. FAILURE TO CONNECT THE CABLE PROPERLY
MAY RESULT IN DAMAGE. On the Sunol, the cable can only go in one
way, with the red side down.

WHEN USING THE CORVUS DISK YOU MUST ALWAYS BE SURE THAT
THE FOUR RED SWITCHES WHICH ARE BENEATH THE LIGHTS ON THE
FRONT PANEL ALL POINT TO THE LEFT.

WHEN USING SUNOL DISKS IT IS ABSOLUTELY ESSENTIAL THAT
THEY BE "PRE-FORMATTED" FOR UNIX. STANDARD FACTORY
FORMATTING IS NOT SATISFACTORY. UNIPRESS PERFORMS THE
UNIX FORMATTING ON DISKS WHICH IT PROVIDES, BUT OTHER
VENDORS MAY HAVE NOT DONE SO. IF ¥YOU HAVE A SUNOL DISK
FROM ANOTHER SOURCE YOU MUST CONTACT UNIPRESS FOR THE
FORMATTING INSTRUCTIONS, WHICH YOUR VENDOR CAN APPLY.

Put the RS-232 side of the cable into the Lisa. It goes into a
Lisa parallel card in the housing on the back of the Lisa. The
card must be in the middle of the three slots. If there is no
card in the middle slot, remove the back panel of the Lisa and
insert one into the middle slot. 'fhen replace the back panel.
Connect the cable to the lower of the two R5-232 outlets on the
board.

To recap: On the ILisa side the cable goes into the lower outlet
of a card which must be located in the middle of the three slots
in the housing on the back; on the hard disk the flat cable goes
into the PROCESSOR outlet of the Corvus with the red side towards
the power cord, while on the Sunol it goes into the only outlet,
with the red side pointed down.

Insert the boot "B" diskette into the drive.

Re-boot the Lisa from floppy, by using the mouse to indicate
floppy. Indicate that you want to serialize again, by entering
Ty, Then supply the same numbers given to you earlier by
UniPress. Enter ‘"eject" when you get the Y:" prompt.

Re-insert the "A" diskette. At "Standalone boot:", enter "sunix"
and hit return. As soon as the diskette is ejected, insert the
"ow Jiskette. Then hit return to start, as indicated.

Answer "c" for Corvus/Sunol and "4" for port 4 when asked.

after you see the "#" Unix prompt, issue "./install" to copy

files onto the harddisk. This takes approximately 7 minutes. Then
enter "eject" and remove the diskette.

Copyright 1984 UniPress Software, Inc. (E2}

ot

g

g

igars

8/84

HOW TO INSTALL UNIX ON THE APPLE LISA Page 7

Reboot by hitting the reset button
re-insert the "B" diskette. Type
The system will boot itself. In
the "B" diskette, and will have
diskette,

on the back of the Lisa. Then
"unix.c4" at the ":;" prompt.
the future you will boot using
no further wuse for the "pa"

Type "./install" and when that step has finished, Ltype
"./install_it" to complete the installation.

Proceed directly to WHAT TO DO AFTER INSTALLATION

Copyright 1984 UniPress Software, Inc. (E2)

8/84

HOW TO INSTALL UNIX ON THE APPLE LISA Page 8

WHAT TO DO AFTER INSTALLATION

When you reboot in the future, the steps to take depend upon
whether you have a ProFile, built-in 10-meg, or a Corvus/Sunol.

ProFile in 0 port {Parallel Device} or huilt-in l0-meg

Simply use the mouse to indicate your hard disk, and Unix will
boot. No diskette is needed. Enter "w(0,2501)unix” when you get
the ":" prompt.

Pro¥ile in 4 port

Use the mouse to indicate slot 7. This is unfortunate, but Apple
considers the lower middle outlet as 7, while Unix considers it
as 4. No diskette is needed. Enter "w(4,2501)unix" when you get
the ":" prompt.

Corvus/Sunol in 4 port

Use the mouse to indicate the floppy, and insert the "B"
diskette. Enter "unix.c4" at the ":" prompt.

Lisa Unix is single user at this point. To come up multi-user,
type the command "init 2" and hit return. ¥You will get a
confirming message from Unix that you have changed run state.

Login as root, or rootcsh if you want the Cshell as your command
prompter.

The port labelled "Serial B" on the back is /dev/ttyl, and if you
plug a terminal there with a reverser (null modem) cable, you can
use Unix multi-user at 9600 Dbaud. Use stty command to change
speed, after you are logged in on that port.

To change the speed of a port other than the one you are using,
edit the /etc/inittab file. To handle 300/1200 baud
communication, as when dialing in, change the ®"d" at the end of
the relevant 1ine to an "H". The "d" means %600 baud. See the
inittab pages in Sections 4 and 5 of the full Unix manual for
further information. To make the change effective, either reboot
or do the following:

Enter "kill -1 1", and enter "init 2" when you get
a prompt.

Copyright 1984 UniPress Software, Inc. (EZ)

g

5 i
S

8/84

HOW 70 INSTALL UNIX ON THE APPLE LISA Page 9

The port labelled "Serial A" on the back is /dev/tty0, and is
typically used to communicate with other computers via the cu or
uucp commands.

As shipped, this port is not enabled for login (since we have it
set up for cu}. To enable it for 1login, edit the file
/etc/inittab, and duplicate the ttyl entry for tty0 to enable
login. You must then either reboot, or follow the steps
indicated above in "D". The port will come up at 9600 baud. Use
the stty command to change the baud rate.

If you have additional hard disks you can connect them to the
Lisa Ffor more storage. These disks must be ProFile, Corvus or
Sunol drives. (0OFf course, if you use them for Unix you will lose

any other data you have put there.} To add more disks to the Lisa
Unix:

a Hook up the additional disk to the Lisa by
plugging it into a parallel card.
b The outlets on vertical parallel cards are:
lower left /dev/cla
upper left /éev/c2a
lower middle J/dev/cda
upper middle /dev/c5a
lower right J/dev/cla
upper right /dev/cBa

(NOTE: Lef:t and right are as seen from
the BACK of the Lisa.)
c You can access these devices by:

mount /dev/c7a /t
cd /t

-

Copyright 1984 UniPress Software, Inc. (E2}

8/84 HOW TO INSTALL UNIX ON THE APPLE LISA Page 10

IF YOU HAVE A DISK LARGER THAN 20-MEG

You must "inform" Unix that you have more storage area. The
way you do this is by issuing the following commands:

a. mknod /dev/cdc b 2 66

b. mkfslbh /dev/cdc <SIZE> - where <SIZE> is the value
shown here:
disk size value
25-meg 10000
40-meg 40000
65-meg 80000
92-meg 130000

c. mkdir /u

when you want to use the larger area, you do so by treating it
as a "mountable filesystem”. This is done by issuing the
following commands:

a, mount /dev/cdc Ju
b. cd /u

NOTE: You can put the mount command as
shown above into the /fetc/rc¢ file, and the
rest of the disk will be available
automatically to you when you run
multi-user.

REMEMBER, PLEASE RUN THE FSCK COMMAND OFTEN TO HELP KEEP
YOUR FILESYSTEM IN GOOD ORDER.

Copyright 1984 UniPress Software, Inc. (E2)

i’

7/84 BRIEF INTRODUCTION TO UNIX V COMMANDS AND KEYS Page

This is a brief summary of some things you must understand in order to
use the Unix UniPlus+ operating system on the aApple Lisa. This list
is not complete or comprehensive; these commands are described in more
detail on the manual pages which follow, and in the full Unix manuals.

Things to know first:

A number of Unix commands use the CONTROL and DEL keys. On the Lisa
keyboard the CONTROL key the one with the picture of an apple, and the
DEL key is labelled CLEAR. Throughout the Unix documentation you will
see references to these keys. The Control key must be pressed
simultaneously with the other key involved. Thus for Control-D, press
Contreol and "d" together.

The 'DEL' key will stop a command which is in progress.

The Control-D combination acts as end-of-file when you are redirecting
the "standard input" from the keyboard. {Control-D is also used to log
you out if you are using the regular "Bourne" shell, so be careful).

The Control-S combination will stop the output to the screen, and

~~lontrol-Q combination will re-start that output.
Pl

&

A Few Commands

cat - is used to type a file or files to the screen. This is
equivalent to the 'type' command found in most systems.

cc - is used to run the ¢ compiler; e.g. "cc file.c" will produce an
executable program called 'a.out'. Just type "a.out" and the program
will execute.

cd - is used to change your current working directory. Try the 'cd
/bin' command to 'go to' the directory where most of these commands
live. Then do an 'ls' command to see what is listed there.

cmp - is used to compare two files, bit for bit.

Copyright 1984 UniPress Software, Inc. (E2)}

11

7/84 BRIEF INTRODUCTION TO UNIX V COMMANDS AND KEYS Page

cp - is used to copy one file to another. You can also copy a group

of files to another directory, since this command, and most of the
others, accept "wild cards."™ For example, "ab*" means all files
staring with "ab", and "a?c" means all files staring with "a", ending
with "¢", and having any second character, such as "abc", "aac", etc.

cu - is used to call up another Unix system and (possibly) transfer
files between them. This is VERY useful for the Lisa, and very easy
to do. To sign on to another Unix through Serial B of the Lisa (which
has the Unix address /dev/ttyl), type:

% cu ~s 1200 -1 /dew/ttyl dir

then login to the other machine. o disconnect type:; ~. To transfer
files, use the “%$take and ~%put options described in the cu manual
page. If you are using an autodialer, after you see the "Connected"
message, enter the dialing command. (On the Hayes modem at this point
you enter ATDTY9761212, for example.)

There is a peculiarity in cu: Even though you specify the baud rate
you want (with the -s XXXX flag), you must alsc change the terminal
entry in Jusr/1ib/uucp/L-devices. (The c¢hange to make is
self-explanatory).

NOTE: cu only functicons on a port which has no login
running. To see if you have a login running, do a
ps -ale command and look under the "TTY" column for
an entry under the port number involved. (This will
be 0 or l.) If there is an entry there with a "getty"
in the right column, login 1is enabled. If you have
previously enabled login on the port you now intend
for cu, you must disable login by modifying the
/etc/inittab file. Read the relevant section in the
Unix manual and/or look at /Jetg/inittab. You then
must either shutdown and re-boot, or follow the steps
indicated earler in the WHAT TO DO AFTER INSTALLATION
section of this guide.

date - is used to print or set the date. The format is MMDDHHMMYY, as
in 0204144584, for rebruary 4, 1984; 2:45PM.

df - is used to display the amount of free space on your filesystem.
For instance, to print the free space on the Lisa hard disk, type:
df /dev/p0a (which is the Unix name for the 7Profile). df with no
arguments shows the free space on all the "mounted" digks.

Copyright 1984 UniPress Software, Inc. (E2}

12

et

KT

Mg

7/84 BRIEF INTRODUCTION TO UNIX V COMMANDS AND XEYS Page

du - is used to list the space occupied by each file in the current
directory and its subdirectories.

diff - is used to compare two files and get a list of the differences.
diskformat - is used to format a floppy.
diskformat /dev/rsOa

dump - is used to dump a file system to a floppy diskette. The
filesystem which is dumped can be restored with the restor command.

echo — is used to echo the command line arguments to your terminal.

ed - is the Unix line editor. It is much more powerful than most
microcomputer line editors available. See pages 3-8 of the ed manual
pages for more information.

fsck - is used to check the consistency and correctness of the Unix
filesystem. Just type /etc/fsck (fsck ‘lives' in the /fetc directory),
and the 'root' filesystem will be checked for internal consistency; if
necessary fsck will €ix any problems. (Wo problems will exist unless
the system has previousiy crashed). You can check other filesystems by
giving their names, as in fsck /dev/cda.

grep - is used to search a file or files for a text pattern.

login - is used to sign on to the system. If you sign on as reot, you
will have 'superuser' privileges... you can access almost any file,
etc. Read the login entry in Section 1 and the passwd entry in
Section 5 of the full manual Ffor details on adding additional user
ids, etc.

1s - is used to list the contents of a directory. This is known as
&ir on many systems. The command 1s -1 will list the contents of a
directory in long form. ls7 gives a colmpar list of the files.

mkdir - is used to make a new directory. The command 'mkdir mark?' will
make a new directory named ‘'‘mark'; to get to this directory, type 'cd
mark’

mkfslb - will make a new Unix filesystem on a hard disk or floppy
disk. This is the Unix version of the usual format commands. WEVER
issue mkfslb to your hard disk or you will kKill it! mkfslb should be
used to make a Unix filesystem on Lisa for new floppy disks after they
are formatted.

mkfslh /dev/s0a 800

Copyright 1984 UniPress Software, Inc. (E2)

13

7/84 BRIEF INTRODUCTION TO UNIX V COMMANDS AND KEYS Page

more - is used to look at a file or files a screenful at a time. Hit
the space bar to get the next screen of &ata.

mount - is used to mount a Unix filesystem. To mount a diskette, type
'mount /dev/sDa /t', Then /t is the name of that floppy.

To use a floppy:

. If it is not yet formatted
diskformat /dev/rs(a
mkfslb /dev/s0a 800

In any case
mount /dev/sCa /t
cd /E

As an example,
cat fusr/me/myfile >/t

mv -~ is used to move (or rename) a file or files. 'mv file*x dir'
moves a series of files to the directory dir.

od - is used to dump files to the CRT in a variety of Fformats.

pr — is used to print files with headings, including the file name,
date, etc., Files can be printed multi-column.

rm - is used to remove a file or series of files.

sh - is the Unix shell or command line interpreter. The shell is the
program which listens to you when you log on. Shells can run under
shells, and shells have their own programming language built-in. By
the way, your Unix system also includes the more-powerful c¢shell
{csh).

sort - is used to sort and merge data.

stty - is used to set or display the terminal options. All of the
Lisa ports including the bit-map display can be run at 300, 1200, or
3600 baud, and with many other options.

sync =~ is used to ensure that all disk writes have been completed
before the system is shutdown. Issue sync¢ twice to be sure.

umount ~ is used to unmount a mounted floppy filesystem.

REMEMBER, READ THE MANUAL FOR FULL EXPLANATIONS

Copyright 1984 UniPress Software, Inc. (E2)

14

R

E i
f—

. &
o

el

AR(1)

NAME

AR(1)

ar — archive and library maintainer

SYNOPSIS

ar [uvbaill [mrxtdpq] {posname] archivename filename(s) ...

DESCRIPTION
The archive command ar maintains groups of files combined into a single
archive file. Its main use is to create and update library files as used by the
loader. However, ar can be used for any similar archiving purpose.
Archives often consist of unlinked program modules.

Key is one character [rom the set mrxtdpq, optionally concatenated with
one or more of uvnbail. Archivename is the archive file. The filename(s)
are constituent files in or destined for the archive file. The meanings of the

key
d
r

EXAMPLE

characters are:
Delete the named files from the archive file.

Replace the named files in the archive file. If the optional character u
is used with r, then only those files with modified dates later than the
archive files are replaced. If an optional positioning character from the
set abi is used, then the posmame argument must be present and
specifies that new files are to be placed after (a) or before {b or i)
posname. Otherwise new files are placed at the end.

Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check
whether the added members are already in the archive. Useful only to
avoid quadratic behavior when creating a large archive piece-by-piece.

Print a table of contents of the archive file. If no names are given, all
files in the archive are tabled. If names are given, only those files are
tabled.

Print the named files in the archive.

Move the named files to the end of the archive. If a positioning char-
acter is present, then the posname argument must be present and, as in
r, specifies where the files are to be moved.

Extract the named files. If nc names are given, all files in the archive
are extracted. In neither case does x alter the archive file.

Verbose. Under the verbose option, ar gives a file-by-file description
of the making of a new archive file from the old archive and the consti-
tuent files, When used with t, it gives a long listing of all information
about the files. When used with p, it precedes each file with a name.

Create. Normally ar will create afile when it needs to, The create
option suppresses the normal message that is produced when afile is
created.

Local. Normally ar places its temporary files in the directory /tmp.
This option causes them to be placed in the local directory.

ar rv libar.a text.o

places file "text.o” in archive "libar.a".

October 1983

ar bm filel archivename file2

changes the location of a file inside an archive. "File2" is the file to be
moved. "File2" is moved to a new position before "filel".

FILES
/tmp temporaries

SEE ALSO
1a(1), ar(4).
BUGS
If the same file is mentioned twice in an argument list, it may be put in the

archive twice.
Sufficient disk space must be present to make an entire copy of the archive

or the ar command will fail.

October 1983 -2-

AS(1) AS(1)

NAME
as — assembler

SYNOPSIS
as [—o objfile] [=11 [name ...]

DESCRIPTION
+ As assembles the named files, or the standard input if no file name is
specified.

All undefined symbols in the assembly are treated as global.

The relocatable output of the assembly is left on the file objfile; if that is
omitted, a.ou! is used.

The —1 option produces an assembly listing on file objfife.fsz. If the =1
option is specified and no —o parameter is specified, the assembly listing is
placed on a.lst.

EXAMPLE
as —o file.o filea fileb filec

would assemble the three named files and put the output of the assembly

into "file.o".
FILES
/tmp/as* default temporary file
a.out default resultant object file
a.lst default assembly listing file
SEE ALSO

adb{1), (1), nm{(1), a.out(4)
AS Assembler Reference Guide, James L. Gula and Thomas J. Teixeira.
Revised by UniSoft Systems.

October 1983 -1-

CAT(1) CAT(D)

NAME

cat = concatenate and print files
SYNOPSIS

cat [—u] [~s]file...
DESCRIPTION

Cat reads each fife in sequence and writes it on the standard output,

If no input file is given, or if the argument — is encountered, cat reads
from the standard input file. Output is buffered unless the —u option is
specified. The —s option makes cat silent about non-existent files. No
input file may be the same as the output file unless it is a special file,

EXAMPLE
cat file

prints the file, and:
cat filel file2 > file3
concatenates the first two files and places the result in the third.

WARNING
Command formats such as
cat filel file2 >filel
will cause the original data in file/ to be lost, therefore, take care when
using shell special characters.

SEE ALSO
ep(1), pe(1).

October 1983 -1-

i

\"\a\;ﬂ»f’(

i

s

cc(1)

NAME

cc(1)

cc — C compiler

SYNOPSIS

ce [option 1 ... file ...

DESCRIPTION

Cc is the UNIX C compiler.
Cr accepts several types of arguments:

Arguments whose names end with “.¢’ are taken to be C source programs;
they are compiled, and each object program is left on the file whose name
is that of the source with ‘.0’ substituted for ‘.c’. The ‘.0’ file is normally
deleted if a single C program is compiled and loaded.

In the same way, arguments whose names end with ‘.8" are taken to be
assembly source programs and are assembled, producing a ‘.0’ file.

The following options are interpreted by cc. See /(1) for link editor
options. .

-¢ Suppress the link edit phase of the compilation, and force an
object file to be produced even if only one program is compiled.

-n Passed on to /d to make the text of the resulting program
shared.

-p Arrange for the compiler to produce code which counts the

number of times each routine is called; also, if link editing takes
place, replace the standard startup routine by one which
automatically calls monitor (3C) at the start and arranges to write
out a mon.out file at normal termination of execution of the
object program. An execution profile can then be generated by
use of praf(1).

—~O0PS)

Invoke an object-code improver (optimizer), If K is specified,
certain UNIX kernel optimizer functions are not performed. If P
is specified, stack probe instructions are removed. (Note: P
should only be used for the operating system source.) If § is
specified, stack frame optimization is performed and the
debugger, adb (1), might indicate too few subroutine parameters
on stack trace back.

—R (addr)
Passed on to /d, making the resulting object module origired at
addr(hex).

-8 Compile the named C programs, and leave the assembler-
language output on corresponding files suffixed ‘.5’

-E Run only ¢pp (1) on the named C programs, and send the result
to standard output.

-p Run only the macro preprocessor on the named C programs,
and send the result to the corresponding files suffixed. *.I°

-C Prevent the macro preprocessor from eliding (leaving out) com-
ments.

—o output Name the final executable output file outpur. If this option is
used the file "a.out" will be left undisturbed.

QOcrober 1983 -1-

cc(n™

cc(l)

— D name=def
—Dname Define the name to the preprocessor, as if by #define. If no
definition is given, the name is defined as "1".

—Uname Remove any initial definition of name.

~ Ldir #include files whose names do not begin with ‘/' are always
sought first in the directory of the file argument, then in direc-
tories named in —1I options, then in the directory /ust/include.

—-v print the name of each subprocess as it is executing.

Other arguments are taken to be either link editor option arguments, or C-
compatible object programs, typically produced by an earlier cc run, or
perhaps libraries of C-compatible routines. These programs, together with
the results of any compilations specified, are linked via /(1) (in the order
given) to produce an executable program with name a.our.

EXAMPLE

cc -0 output progl.c prog2.c prog3.c

would compile code in the three named C programs and put the compiled
code into the file "output”.

et

FILES
file.c input file
file.o object file
a.out linked output
/tmp/ctm? temporary
/lib/cpp preprocessor
/lib/c combined compiler passl and pass2
/lib/cl compiler passl
/lib/cl compiler pass2
/lib/c2 optional optimizer invoked with "-Q"
fliv/ert0.0 runtime startoff
/lib/mertd.0 runtime startoff for profiling
/lib/libc.a standard library, see section 3
fusr/include standard directory for "#include’ files
/lib/libm.a math library

SEE ALSO

adb(1), 1d{1), lint(1), prof (1), monitor{3C)

The C Programming Language, Prentice-Hall, 1978, by B. W, Kernighan and
D. M. Ritchie

Programming in C—a uuorial, by B. W. Kernighan

C Reference Manual, by D. M. Ritchie

DIAGNOSTICS

October 1983

The diagnostics produced by C itself are intended to be self-explanatory.
Occasional messages may be produced by the assembler or the link editor.
Confusing syntax may cause the C compiler to indicate an error on the line
following the actual error,

cD{(1) CcD(1)

. NAME
: ¢d — change working directory

SYNOPSIS
ed [directory]

DESCRIPTION

If directory is not specified, the value of shell parameter SHOME is used as
the new working directory. If directory specifies a complete path starting
with /, ., .., directory becomes the new working directory. If neither case
applies, cd tries to find the designated directory relative to one of the paths
specified by the SCDPATH shell variable. S3CDPATH has the same syntax
as, and similar semantics to, the SPATH shell variable. Cd must have exe-
cute (search) permission in directory.

Because a new process is created to execule each command, cd would be
ineffective if it were written as a normal command; therefore, it is recog-
nized and internal to ihe shell

EXAMPLE
cd /unisoft/usr/games

would relocate you to the directory /unisoft/usr/games if this directory is
execulable (searchable) by you.

SEE ALSO
pwd{1), sh{1), chdir{2).

El

October 1983 -1-

CHMOD (1) CHMOD (1)

NAME S
chmod — change mode ’
SYNOFPSIS
chmmed mode files
DESCRIPTION

The permissions of the named files are changed according to mode, which
may be absolute or symbolic. An absolute miode is an octal number con-
structed from the OR of the following modes:

4000 set user ID on execution

37000 set group 1D on execution

1000 sticky bit, sec chmod (2}

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execuie {search) by others

A symbolic mode has the form:
[who 1 op permission [op permission]

The wheo part is a combination of the letters u {for user’s permissions), g
{group) and o (other). The letter a stands for uge, the default if who is
omitted.

Op can be + to add permission to the file’s mode, — to take away permis-
sion, or = to assign permission absolutely (all other bits will be resel).

Permission is any combination of the letters ¥ (read), w {write), x (exe-
cute), s (set owner or group ID) and t (save text, or sticky); u, g, or o indi-
cate that permission is to be taken from the current mode. QOmilling permis-

sion is only useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Operations
are performed in the order specified. The letter s is only useful with w or g
and t only works with u.

Only the owner of a file (or the super-user) may change its mode.

EXAMPLE
chrod 755 filename

changes the mode of "flename" to: read, write, execute {400+ 200-+100)
by owner; read, execute (40+10) for group; read, execute (4+1) for oth-
ers. An Is -l of filename shows [-rwxr-xr-x filename] that the requested
mode is in effect.

chmod = filename

will take away ali permissions from filename, including yours.
chmod o-w file

denies write permission to others.
chmod +x file

makes a file executable.

SEE ALSO o
1s{1), chmod{(2). o

g

Ocrober 1983 -1-

CHOWN (1)] CHOWN (1)

NAME
chown, chgrp — change owner or group

SYNOPSIS
chown owner file ...
chzrp group file ...

DESCRIPTION
Chown changes the owner of the files to owner. The owner may be either a
decimal user ID or a login name found in the password file,

Chgrp changes the group 1D of the files to group., The group may be either
a decimal group 1D or a group name found in the group file.

EXAMPLE
chown unisoft filea fileb filec
would make "unisoft" the owner of the three files.

FILES
fete/ passwd
fetc/group

SEE ALSO
chown(2), group(4), passwd(4).

Ociober 1983 -1-

CLEAR (1) (UniSoft) CLEAR (1)

NAME
clear — clear terminal screen

SYNOPSIS
clear

DESCRIPTION
Clear clears your screen if this is possible. It looks in the environment for
the terminal type and then in /etc/termcap to figure out how to clear the
screen,

EXAMPLE
clear

clears the screen.

FILES
letc/termcap terminal capability data base

October 1983 ' -1-

5, rd
ey

it

5 ;
Pt

7

R

e

CrP(D)

NAME

CP (1)

cp, In, mv - copy, link or move files

SYNOPSIS

cp filel [file2 ...] target
In filel [file2 ..] target
mv filel [file2 ...] target

DESCRIPTION

File! is copied (linked, moved) to targer. Under no circumstance can filed
and rarger be the same (take care when using s# (1) metacharacters). If tar-
get is a directory, then one or more files are copied (linked, moved) to that
directory.

If mv determines that the mode of targer forbids writing, it will print the
mode (see chmod(2}) and read the standard input for one line (if the stan-
dard input is a terminal); if the line begins with y, the move takes place; if
not, mv exits.

Only mv will allow filel to be a directory, in which case the directory
rename will occur only if the two directories have the same parent.

EXAMPLE

¢p alpha beta gamma /unisofi/roxanne
places copies of the three files in the directory /uniseft/roxanne.

SEE ALSO

BUGS

cpio(1), rm({1), chmod(2).

If filel and farget lie on different file systems, mv must copy the file and
delete the original. In this case the owner name becomes that of the copy-
ing process and any linking relationship with other files is lost,

Ln will not link across file systems.

October 1983 -1-

cMP(1) - CMP (1)

NAME

cmp — compare two files
SYNOPSIS

emp [—1] [—s] filel file2
DESCRIPTION

The two files are compared. (If file/ is —, the standard input is used.)
Under default options, ¢mp makes no comment if the files are the same; if
they differ, it announces the byte and line number at which the difference

occurred. If one file is an initial subsequence of the other, that fact is
noted.

Options:

—1 Print the byte number {(decimal) and the differing bytes (octal) for
each difference.

—5 Print nothing for differing files; return codes only.
EXAMPLE
¢mp alpha beta
will report if the files are different and at what point they differ, such as:
alpha beta differ: char 33, line 2
SEE ALSO
comm{(1), diff(1).
DIAGNOSTICS

Exit code O is returned for identical files, 1 for different files, and 2 for an
inaccessible or missing argument.

October 1983 -1-

i

: 71 NAME

cudc) cuic)

cu ~— call another UNIX System

SYNOPSIS

cu [—sspeed] [—Minel [—h] [—t] [—d] {-m] [~o|-e] telno | dir

DESCRIPTION

Cu calls up ancther UNIX system, a terminal, or possibly a non-UNIX sys-
tem. It manages an interactive conversation with possible transfers of
ASCII files. Speed gives the transmission speed (110, 150, 300, 600, 1200,
4800, 9600}; 300 is the default value. Most of our modems are either 300
or 1200 baud. For dial out lines, cu will choose a modem speed (300 or
1200) as the slowest available which will handle the specified transmission
speed. Directly connected lines may be set to speeds higher than 1200
baud.

The —1 value may be used to specify a device name for the communica-
tions line device to be used. This can be used to override searching for the
first available line having the right speed. The speed of a line is taken from
the file fusr/lib/uucp/L-devices, overriding any speed specified by the ~s
option. The —h option emulates local echo, supporting calls to other com-
puter systems which expect terminals to be in half-duplex mode. The —t
option is used when dialing an ASCII terminal which has been set to auto-
answer. Appropriate mapping of carriege-returns to carriage-return-line-
feed pairs is set. The —d option cause diagnostic traces to be printed. The
—m option specifies a direct line which has modem control, The —e {(—o)
option designates that even (odd) parity is to be generated for data sent to
the remote. The —d option causes diagnostic traces to be printed. Telno is
the telephone number, with equal signs for secondary dial tone or minus
signs for delays, at appropriate places. The string dir for relno may be used
for directly connected lines, and implies a null ACU, Using dir insures that
a line has been specified by the -1 option.

Cu will try each line listed in the file /usr/lib/uucp/L-devices until it finds
an available line with appropriate attributes or runs out of entries. After
making the connection, c¥ runs as two processes: the transmit process reads
data from the standard input and, except for lines beginning with ™, passes
it to the remote system; the receive process accepts data from the remote
system and, except for lines beginning with = , passes it to the standard
output. Normally, an astomatic DC3/DCI protocol is used to control input
from the remote so the buffer is not overrun. Lines beginning with ~ have
special meanings.

The transmit process interprets the following:

terminate the conversation,

-1 escape to an interactive shell on the local system.

lemd. .. run cmd on the local system (via sh —c¢).

“$cemd. .. run cmd locally and send its output to the remote sys-
tem.

“thtake from [to]l copy file from {on the remote system) to file to on the
local system. If fo is omitied, the from argument is
used in both places.

“%put from {10} copy file from {on local system) to file t0 on remote
system. If o is omitted, the from argument is used in

COctober 1983 -1-

cu(ic) Ccuc)

both places.

send the line ™ ... to the remote system.

“Yhnestop turn off the DC3/DC1 input control protocol for the
remainder of the session. This is useful in case the
remote system is one which does not respond properly
to the DC3 and DCI characters,

The receive process normally copies data from the remote system to its
standard output. A line from the remote that begins with > initiates an
cutput diversion to a file. The complete sequence is:

>[>]: Al
zero or more lines to be written to file
>

Data from the remote is diverted (or appended, if >> is used) to file.
The trailing "> terminates the diversion.

The use of “%pat requires siy(1) and cat{1) on the remote side. It also
requires that the current erase and kill characters on the remote system be
identical to the current ones on the local system. Backslashes are inserted
at appropriate places.

The use of “%take requires the existence of echo(1) and car(i) on the
remote system. Also, stty tabs mode should be set on the remote system
if tabs are to be copied without expansion.

EXAMPLE

FILES

cu -s 1200 777-8888

attempts to connect to the telephone line numbered "777-8888" at 1200
baud rate.

Just/lib/uucp/L-devices
/usr/spool/uucp/LCK..(tty-device)
fdev/null

SEE ALSO

cat(1}, ct{1C), echo(1}, stty{1), uucp(1C).

DIAGNOSTICS

BUGS

Exit code is zero for normal exit, non-zero (various values) otherwise.

Cu buffers input internally.
There is an artificial slowing of transmission by cu during the “%put opera-
tion so that loss of data is unlikely.

October 1983 -2-

e

DATE(1) DATE(1)

7y NAME
date — print and set the date

SYNOPSIS
date [mmddhhmmlyyl 1 [<+format |

DESCRIPTION
If no argument is given, or if the argument begins with +, the current date
and time are printed. Otherwise, the current date is set. The first »un is
the month number; dd is the day number in the month; kb is the hour
number (24 hour system}; the second mm is the minute number; yv is the
last 2 digits of the year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year
is mentioned. The system operates in GMT. Date takes care of the conver-
sion to and from local standard and daylight time.

If the argument begins with -+, the output of date is under the control of
the user. The format for the output is similar to that of the first argument
to printf(38). All output fields are of fixed size (zero padded if necessary).
Each field descriptor is preceded by % and will be replaced in the output by
its corresponding value. A single % is encoded by %%. All other characters
are copied to the output without change, The string is always terminated
with a new-line character.

Field Descriptors:

insert a new-line character

insert a tab character

month of year — 01 to 12

day of month — Gl to 31

last 2 digits of year — 00 to 99
date as mm/dd/yy

hour — 00 to 23

minute — 00 to 59

second ~ 00 to 59

time as HH:MM:SS

day of year — 001 to 366

day of week — Sunday = 0
abbreviated weekday — Sun to Sat
abbreviated month — Jan to Dec
time in AM/PM nolation

it

oEr e g‘—'u—]mgmw% = R

EXAMPLE
date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'
generates as output:
DATE: 08/01/76
TIME: 14:45:05

DIAGNOSTICS
No permission if you aren’t the super-user and you try to change the
date;
bad conversion if the date set is syntactically incorrect;

bad format character if the field descriptor is not recognizable.
 FILES
i /dev/kmem
ST WARNING
It is a bad practice to change the date while the system is running multi-
user.

Ociober 1983 -1-

DD (1) PD (1)

NAME
dd ~ convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possible
conversions. The standard input and output are used by default. The input
and output block size may be specified to take advantage of raw physical

/0.

option values

if = file input file name; standard input is default

of = file output file name; standard cutput is defauit

ibs=n input block size n bytes (defaunlt 512)

obs=n output block size {default 512)

bs=n set both input and output block size, superseding ibs and
obs, also, if no conversion is specified, it is particularly
efficient since no in-core copy need be done

chs=n conversion buffer size

skip=n skip » input records before starting copy

seek=n seek » records from beginning of output file before copy-

ing, dd creates the specified output file (see creat(2)),
which insures the length of the file will be zero; seeking n
records from the beginning of the output file will fill the
skipped area with zeros (nulls).
count=n copy only n input records
cony = ascii convert EBCDIC to ASCH
ebedic convert ASCII to EBCDIC
ibm slightly different map of ASCH to EBCDIC
Icase map alphabetics to lower case
Hease map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
syne pad every input record to ibs
...y ... Several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may
end with k, b, or w to specify multiplication by 1024, 512, or 2 respec-
tively; a pair of numbers may be separated by x to indicate a product.

Cbs is used only if ascii, ebcdic, or ibm conversion is specified. In the
former case cbs characters are placed into the conversion buffer, converted
to ASCII, and trailing blanks trimmed and new-line added before sending
the line to the output. In the latter two cases ASCII characters are read into
the conversion buffer, converted to EBCDIC (or the IBM version of
EBCDIC), and blanks added to make up an output record of size cbs.

After completion, dd reports the number of whole and partial input and
output blocks.

EXAMPLE
dd if=/dev/rmt0 of=x ibs=800 cbs=80 conv=ascii,lcase

will read an EBCDIC tape blocked ten 80-byte EBCDIC card images per
record into the ASCII file "x".

October 1983 -1-

g

Ry

/
DIFF (1) DIFF (1)

NAME
diff — differential file comparator

SYNOPSIS
diff [—efbh] filel file2

DESCRIPTION
Diff tells what lines must be changed in two files to bring them into agree-
ment. If filel (file2) is —, the standard input is used. If filel (file2) is a
directory, then a file in that directory with the name file2 (filel) is used.
The normal output contains lines of these forms:

nlan3nd
nin2d nd
nin2c nind

These lines resemble ed commands to convert filel into file2. The
numbers after the letters pertain to fifel. In fact, by exchanging a for d
and reading backward one may ascertain equally how to convert file2 into
filel. As in ed, identical pairs where nf! = n2 or n3 = n4 are abbreviated
as a single number.

Following each of these lines come all the lines that are affected in the first
file flagged by <, then all the lines that are affected in the second file
flagged by >.

The —b option causes trailing blanks (spaces and tabs) to be ignored and
other strings of blanks to compare equal.

The —e option produces a script of a, ¢ and 4 commands for the editor ed,
which will recreate file2 from filel. The —f option produces a similar
script, not useful with ed, in the opposite order. In connection with —e,
the following shell program may help maintain multiple versions of a file.
Only an ancestral file ($1) and a chain of version-to-version ed scripts
($2,%3,...) made by diff need be on hand. A ‘‘latest version™ appears on
the standard output.

{shift; cat $*; echo '1,3p") | ed — $1
Except in rare circumstances, diff finds a smallest sufficient set of file
differences.

Option —h does a fast, haif-hearted job. It works only when changed
stretches are short and well separated, but does work on files of unlimited
length. Options —e and —f are unavailable with —h.

EXAMPLE
diff -e filel file2

where "filel” and "file2" are two versions of the manual text for the ¢p com-
mand, produces:

35,41d
27¢c
In the second form, one or more

18,25¢
existed; the mode of the source file
is used otherwise.

October 1983 -1-

DD (1} DD{(1)

Note the use of raw magtape. Dd is especially suited to I/0 on the raw
physical devices because it allows reading and writing in arbitrary record
sizes.

SEE ALSO
cp(1).

DIAGNOSTICS
f+p records in(out) numbers of full and partial records read (written)

BUGS
The ASCII/ EBCDIC conversion tables are taken from the 256 character
standard in the CACM Nov, 1968. The ibm conversion, while less blessed
as a standard, corresponds better to certain IBM print train conventions.
There is no universal solution.

New-lines are inserted only on conversion to ASCII; padding is done only
on conversion to EBCDIC. These should be separate options.

October 1983 -2

T

DIFF (1) DIFF (1)

15¢
The mode and owner of

10c
file ... directory

Tc
filel file2

1,3¢
TJHCP1
SH NAME

Following this ed script would transform "filel” into file2", line for line and
character for character.

FILES
/tmp/d??77?
Jusr/lib/diffh for —h
SEE ALSO
emp(1), comm{(1}, ed(1),
DIAGNOSTICS
Exit status is 0 for no differences, 1 for some differences, 2 for trouble.
=, BUGS
Editing scripts produced under the —e or -f option are naive about creat-

ing lines consisting of a single period (.).

October 1987 -2-

DU (1) DU (1)

NAME g
du — summarize disk usage g
SYNOPSIS
du [—ars] [names]
DESCRIPTION

Du gives the number of blocks contained in all files and {recursively) direc-
tories within each directory and file specified by the names argument. The
block count includes the indirect blocks of the file. If names is missing, . is
used.

The optional argument —s causes only the grand total {for each of the
specified names) to be given. The optional argument —a causes an entry o
be generated for each file. Absence of either causes an entry to be gen-
erated for each directory only.

Du is normally silent about directories that cannot be read, files that cannot
be opened, etc. The -r option will cause du to generate messages in such
instances.

A file with two or more links is enly counted cnce.

EXAMPLE
du dirl dir2

produces a count of the number of blocks in each of the directories. In
order to see how many blocks are in each file, the —a option must be used.

BUGS
If the —a option is not used, non-directories given as arguments are not
listed.
If there are too many distinct linked files, du will count the excess files
more than once.
Files with holes in them will get an incorrect block count,

Ocrober 1983 -1-

DUMP(1) DUMP{(1}

s, NAME
i dump — dump selected parts of an object file
"""" SYNOPSIS
dump [—a] {—f] [~0] [—h] [=s] [=r] [=01] [~t} [—z name] files
DESCRIPTION
The dump command dumps selected parts of each of its object file argu-
ments.

This command will accept both object files and archives of object files. It
processes each file argument according to one or mare of the following

options:

—a Dump the archive header of each member of each archive file
argument,

—f Dump each file header.

-0 Dump each optional header.

—h Dump section headers.

-5 Dump section contents.

-r Dump relocation information.

-~ Dump line number information.

-t Dump symbol table entries.

—Z pame Dump line number entries for the named function.

The following modifiers are used in conjunction with the options listed
above to modify their capabilities.

g

—d number Dump the section number or range of sections starting at
number and ending either at the last section number or number
specified by +d.

+d number Dump sections in the range either beginning with first section
or beginning with section specified by —d.

—n name Dump information pertaining only to the named entity. This
modifier applies to —h, —s, —r, ~|, and —t.

—t index Dump only the indexed symbol table entry. The —t used in
conjunction with +t, specifies a range of symbol table entries.

+t index Dump the symbol table entries in the range ending with the
indexed entry. The range begins at the first symbol table
entry or at the entry specificd by the —t option.

-V Dump information in symbolic representation rather than
numeric (e.g., C_STATIC instead of 0X02). This modifier can
be used with all the above optiens except —s and —o options
of dump.

—Z name,number
Dump line number entry or range of line numbers starting at
number for the named function.

+z number Dump line numbers starting at either function name or
number specified by —z, up to number specified by +z.

October 1983 -1-

DUMP (1) DUMP (1)

Blanks separating an option and its modifier are optional. The comma
separating the name from the number modifying the —z option may be
replaced by a blank.

The dump command attempts to format the information it dumps in a
meaningful way, printing certain information in character, hex, octal or
decimal representation as appropriate,

EXAMPLE
dump Obf 2310 /dev/rfdcO /dev/rmscOa

would perform a level ‘0’ dump to the floppy disk device "rfdc0", which has
2310 blocks. The filesystem to be dumped is /dev/rmscba. Note that all
the parameters in the key are grouped first in the command line, folowed
by the dump device (if other than tape), size, etc. The last argument
should be the pathname of the file system being dumped.

SEE ALSO
a.out(4), ar(4},

October 1983 -2-

S

Ly

ECHO{(1) ECHO(1)

¢ 3 NAME
echo — echo arguments

SYNOPSIS
echo [arg] ..

DESCRIPTION
Echo writes its arguments separated by blanks and terminated by a new-line
on the standard output. It also understands C-like escape conventions;
beware of conflicts with the shell’s use of \:

\b backspace

\c print line without new-line

\f form-feed

\n new-line

\r carriage return

\t tab

\\ backslash

\n the 8-bit character whose ASCII code is the 1-, 2- or 3-digit octal
number n, which must start with a zero.

Echo is useful for producing diagnostics in command files and for sending
known data into a pipe.

EXAMPLE
echo curmudgeon

simply responds
curmudgeon

Sotagaist

on the standard output.

SEE ALSO
sh(1).

October 1983 -1

ED(1)

NAME

ED (1)

ed, red — text editor

SYNOPSIS

ed [-1 [—x]1fie]
red [— J | —-x11file]

DESCRIPTION

£d is the standard text editor. If the file argument is given, ed simulates an
e command (see below) on the named file; that is to say, the file is read
into ed’s buffer so that it can be edited. The optional — suppresses the
printing of character counts by e, r, and w commands, of diagnostics from
¢ and ¢ commands, and of the ! prompt after a !shell command. If —x is
present, an x command is simulated first to handie an encrypted file. Ed
operates on a copy of the file it is editing; changes made to the copy have
no effect on the file untii a w (write} command is given. The copy of the
text being edited resides in a temporary file called the buffer. There is only
one buffer.

Red is a restricted version of ed. It will only allow editing of files in the
current directory. It prohibits executing shell commands via
\shell command. Attempts to bypass these restrictions result in an error
message (resiricted shell),

Both ed and red support the fspec (4) formatting capability. After including
a format specification as the first line of file and invoking ed with your ter-
minal in stty —tabs or stty tab3 mode (see suy (1), the specified tab stops
will automatically be used when scanning file. For example, if the first line
of a file contained:
<:15,10,15 s72:>

tab stops would be set at columns 5, 10 and 15, and a maximum line length
of 72 would be imposed. NOTE: while inputting text, tab characters when
typed are expanded to every eighth column as is the defauit.

Commands to ed have a simple and regular structure: Zero, one, Or two
addresses followed by a single-character command, possibly followed by
parameters to that command. These addresses specify one or more lines in
the buffer. Every command that requires addresses has default addresses,
so that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands
allow the input of text. This text is placed in the appropriate place in the
buffer. While ed is accepting text, it is said to be in impur mode. In this
mode, ro commands are recognized; all input is merely collected. Input
mode is left by typing a period (.} alone at the beginning of a line.

Ed supports a limited form of regular expression notation; regular expres-
sions are used in addresses to specify lines and in some commands (e.g., 5)
to specify portions of a line that are to be substituted. A regular expression
(RE) specifies a set of character strings. A member of this set of strings is
said to be martched by the RE. The REs allowed by ed are constructed as
follows:

The following one-character REs match a single character:

1.1 An ordinary character (rot one of those discussed in 1.2 below) is a
one-character RE that matches itself.

Ociober 1983 w1 -

i

Syt

ED(1)

1.2

13

1.4

ED (1}

A backslash (\) followed by any special character is a one-character
RE that matches the special character itself. The special characters are:

a. ., *, 1, and \ (period, asterisk, left square bracket, and backslash,
respectively), which are always special, except when they appear
within square brackets ([I; see 1.4 below).

b. ™ (caret or circumflex), which is special at the beginning of an
entire RE {see 3.1 and 3.2 below), or when it immediately follows
the left of a pair of square brackets ([1) (see 1.4 below).

¢. 8 (currency symbol), which is special at the end of an entire RE
{see 3.2 below).

d. The character used to bound (i.e., delimit) an entire RE, which is
special for that RE (for example, see how slash (/) is used in the
£ command, below.)

A period (.) is a one-character RE that matches any character excepi
new-line.

A non-empty string of characters enclosed in square brackets {I1) is a
one-character RE that matches any one character in that string. If,
however, the first character of the string is a circumflex (*), the one-
character RE matches any character except new-line and the remaining
characters in the string. The ™ has this special meaning only if it
occurs first in the string. The minus {~) may be used to indicate a
range of consecutive ASCII characters; for example, {0—9] is
equivalent to [0123456789]. The — loses this special meaning if i
occurs first (after an initial ~, if any) or last in the string. The right
square bracket (1) does not terminate such a string when it is the first
character within it (after an initial ~, if any); e.g., [la—f} matches
either a right square bracket {]) or one of the letters a through f
inclusive. The four characters listed in 1.2.a above stand for them-
selves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

21

2.2

2.3

2.4

2.5

2.6

October 1983

A one-character RE is a RE that matches whatever the one-character
RE matches.

A one-character RE followed by an asterisk {¢) is a RE that matches
zero or more occurrences of the one-character RE. If there is any
choice, the longest leftmost string that permits a match is chosen.

A one-character RE followed by \{m\}, \{m\}, or \[m,n\} is a RE
that matches a range of occurrences of the one-character RE. The
values of m and » must be non-negative integers less than 256; \[m\}
matches exactly m occurrences; \{m\} matches ar least m
occurrences; \{m,m\} maiches any number of occurrences between m
and n inclusive. Whenever a choice exists, the RE matches as many
occurrences as possible.

The concatenation of REs is a2 RE that matches the concatenation of
the strings matched by each compenent of the RE.

A RE enclosed between the character sequences \{ and \) is a RE that
matches whatever the unadorned RE matches.

The expression \n matches the same string of characlers as was
matched by an expression enclosed between \{ and \) earfier in the

-2

ED (1)

ED (1)

same RE. Here # is a digit; the sub-expression specified is that begin-
ning with the n-th occurrence of \(counting from the left. For exam-
ple, the expression ~“\(.\)\1$ matches a line consisting of two
repeated appearances of the same string.

Finally, an entire RE may be constrained to match only an initial segment
or final segment of a line {or both):

3.1 A circumflex (*) at the beginning of an entire RE constrains that RE
to match an initial segment of a line.

3.2 A currency symbol ($) at the end of an entire RE constrains that RE
to match a final segment of a line.

The construction * entire RE$ constrains the entire RE 1o match the entire
line,

The null RE (e.g., //) is equivalent to the last RE encountered. See also
the last paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any time
there is a current line. Generally speaking, the current line is the last line
affected by a command; the exact effect on the current line is discussed
under the description of each command. Addresses are constructed as foi-
lows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number r addresses the n-th line of the buffer.
4

¥ addresses the line marked with the mark name character x, which
must be a lower-case letter. Lines are marked with the & command
described below.

5. A RE enclosed by slashes (/) addresses the first line found by search-
ing forward from the line following the current line toward the end of
the buffer and stopping at the first line containing a string matching
the RE. If necessary, the search wraps around to the beginning of the
buffer and continues up to and including the current line, so that the
entire buffer is searched. See also the last paragraph before FILES
below.

6. A RE enclosed in question marks (?) addresses the first line found by
searching backward from the line preceding the current line toward the
beginning of the buffer and stopping at the first line containing a
string matching the RE. If necessary, the search wraps around to the
end of the buffer and continues up to and including the current line.
See also the last paragraph before FILES below.

7. An address followed by a plus sign (+) or a minus sign (—) followed
by a decimal number specifies that address plus (respectively minus)
the indicated number of lines. The plus sign may be omitted,

8. If an address begins with + or —, the addition or subtraction is taken
with respect to the current line; e.g, —5 is understood to mean .—85.

9. If an address ends with + or —, then | is added to or subtracted from
the address, respectively. As a consequence of this rule and of rule 8
immediately above, the address — refers to the line preceding the
current line. (To maintain compatibility with earlier versions of the

October 1983 -3.

S

i

ED (1) ED (1)

A

PO editor, the character in addresses is entirely equivalent to —.)
Moreover, trailing + and — characters have a cumulative effect, so
— = refers 1o the current line less 2.

10. For convenience, a comma (,)} stands for the address pair 1, $, while a
semicolon (;} stands for the pair .,$.

Commands may require zerg, one, or two addresses. Commands that
require no addresses regard the presence of an address as an error. Com-
mands that accept one or two addresses assume default addresses when an
insufficient number of addresses is given; if more addresses are given than
such a command requires, the last one{s) are used.

Typically, addresses are separated from each other by a comma (,). They
may also be separated by a semicolon (;). In the latter case, the current
line (.) is set to the first address, and only then is the second address cal-
culated. This feature can be used to determine the starting line for forward
and backward searches (see rules 5. and 6. above). The second address of
any two-address sequence must correspond to a line that follows, in the
buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are nof part of the address; they show that
the given addresses are the default.

It is generally illegal for more than one command to appear on a line.

However, any command (except e, £, r, or w) may be suffixed by I, n or p,

in which case the current line is either listed, numbered or printed, respec-
tively, as discussed below under the /, » and p commands.

ey (.)a

<lext>

. The append command reads the given text and appends it after
the addressed line; . is left at the last inserted line, or, if there
were none, at the addressed line. Address 0 is legal for this com-
mand: it causes the “‘appended’ text to be placed at the begin-
ning of the buffer. The maximum number of characters that may
be entered from a terminal is 256 per line (including the newline
character).

(.)e

<iext>

The change command deletes the addressed lines, then accepis
input text that replaces these lines; . is left at the last line input,
or, if there were none, at the first line that was not deleted.

{.,.)d The delete command deletes the addressed lines from the buffer.
The line after the last line deleted becomes the current line; if the
lines deleted were originally at the end of the buffer, the new last
line becomes the current line.

e file The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; . is set to the last
line of the buffer. If no file name is given, the currently-
remembered file name, if any, is used (see the fcommand). The
number of characters read is typed; file is remembered for possi-
ble use as a default file name in subsequent e, r, and w com-
mands. If file is replaced by !, the rest of the line is taken to be a
shell (s#(1)) command whose output is to be read. Such a shell

October 1983 -4 -

ED(1)

E file

f file

ED (1)

command is not remembered as the current file name. See also
DIAGNOSTICS below.

The Edit command is like e, except that the editor does not check
to see if any changes have been made to the buffer since the last
w command.

If file is given, the file-name command changes the currently-
remembered file name to file; otherwise, it prints the currently-
remembered file name.

(1,8%)g/ RE/ command list

In the global command, the first step is to mark every line that
matches the given RE. Then, for every such line, the given com-
mand list is executed with . initially set to that line. A single
command or the first of a list of commands appears on the same
line as the global command. All lines of a multi-line list except
the last line must be ended with a \; a, i, and ¢ commands and
associated input are permitted; the . terminating input mode may
be omitted if it would be the last line of the command list. An
empty command list is equivalent to the p command. The g, G,
v, and ¥ commands are nor permitted in the conumand list. See
also BUGS and the last paragraph before FILES below,

(1,8)G/RE/

(.}
<text>

(.,.+1)j

October 1983

In the interactive Global command, the first step is to mark every
line that matches the given RE. Then, for every such line, that
line is printed, . is changed to that line, and any one command
{other than one of the a, ¢, i, g, G, v, and ¥ commands) may be
input and is executed. After the execution of that command, the
next marked line is printed, and so on; a new-line acts as a null
command; an & causes the re-execution of the most recent com-
mand executed within the current invocation of G. Note that the
commands input as part of the execution of the G command may
address and affect any lines in the buffer. The G command can
be terminated by an interrupt signal {ASCII DEL or BREAK).

The heip command gives a shorl error message that explains the
reason for the most recent ? diagnostic.

The Help command causes ed to enter a mode in which error
messages are printed for all subsequent ? diagnostics. It will alsc
explain the previous ? if there was one. The A command alter-
nately turns this mode on and off; it is initially off.

The insert command inserts the given text before the addressed
line; . is left at the last inserted line, or, if there were none, at the
addressed line. This command differs from the ¢ command only
in the placement of the input text. Address 0 is not legal for this
command. The maximum number of characters that may be
entered from a terminal is 256 per line ({including the newline
character).

The join command joins contiguous lines by removing the
appropriate new-line characters. If exactly one address is given,

-5

Ry

e

-
R

ED (1)

{(.,.)Jma

q

Q
($)r file

ED (1)

this command does nothing.

The mark command marks the addressed line with name x,
which must be a lower-case letter. The address then addresses
this line; . is unchanged.

The list command prints the addressed lines in an unambiguous
way: a few non-printing characters (e.g., fab, backspace) are
represented by (hopefully) mnemonic overstrikes, all other non-
printing characters are printed in octal, and long lines are folded.
An ! command may be appended to any other command other
than e, f, r, or w,

The move command repositions the addressed line(s) after the
line addressed by @. Address § is legal for a and causes the
addressed line{s) to be moved to the beginning of the file; it is an
error if address a falls within the range of moved lines; . is left at
the last line moved.

The number command prints the addressed lines, preceding each
line by its line number and a tab character; . is left at the last line
printed. The r command may be appended to any other com-
mand other than e, f, r, or w.

The print command prints the addressed lines; . is left at the last
line printed. The p command may be appended to any other
command other than e, f, r, or w; for example, dp deletes the
current line and prints the new current line.

The editor will prompt with a « for all subsequent commands.
The P command alternately turns this mode on and off; it is ini-
tially off,

The quit command causes ed to exit. No automatic write of a file
is done (but see DIAGNOSTICS below).

The editor exits without checking if changes have been made in
the buffer since the last w command.

The read command reads in the given file after the addressed
line, If no file name is given, the currently-remembered file
name, if any, is used (see ¢ and f commands). The currently-
remembered file name is notr changed unless file is the very first
file name mentioned since ed was invoked. Address O is legal for
r and causes the file to be read at the beginning of the buffer. If
the read is successful, the number of characters read is typed; . is
set to the last line read in. If file is replaced by !, the rest of the
line is taken to be a shell (s#(1)) command whose output is to be
read. For example, "$r !Is* appends current directory to the end
of the file being edited. Such a shell command is nof remem-
bered as the current file name.

(.,.)s/ RE/ replacement/ or
(.,.)s/ RE/ replacement/g

October 1983

The substitute command searches each addressed line for an
occurrence of the specified RE. In each line in which a match is
found, all (non-overlapped) matched strings are replaced by the
replacement if the global replacement indicator ¢ appears after the
command, If the global indicator does not appear, only the first

-6 -

ED(1)

(.,.)ta

ED{(1)

occurrence of the matched string is replaced. It is an error for the
substitution to fail on all addressed lines. Any character other
than space or new-line may be used instead of / to delimit the RE
and the replacemenr;, . is left at the last line on which a substitu-
tion occurred. See also the last paragraph before FILES below.

An ampersand (&) appearing in the replacemenr is replaced by the
string matching the RE on the current line. The special meaning
of & in this context may be suppressed by preceding it by \. As a
more general feature, the characters \», where n is a digit, are
replaced by the text matched by the n-th regular subexpression of
the specified RE enclosed between \(and \). When nested
parenthesized subexpressions are present, # is determined by
counting cccurrences of \(starting from the left. When the char-
acter % is the only character in the replacement, the replacement
used in the most recent substitute command is used as the
replacement in the current substitute command. The % loses its
special meaning when it is in a replacement string of more than
one character or is preceded by a \.

A line may be split by substituting a new-line character into it.
The new-line in the replacement must be escaped by preceding it
by \. Such substitution cannot be done as part of a g or v com-
mand list.

This command acts just like the m command, except that a copy
of the addressed lines is placed after address @ {which may be 0};
. is left at the last line of the copy.

The undo command nullifies the effect of the most recent com-
mand that modified anything in the buffer, namely the most
recent a, ¢, d, g, i, j, m, r, 5, t, v, G, or ¥ cormmmand.

(1,8)v/RE/ command list

This command is the same as the global command g except that
the command list is executed with . initially set to every line that
does nor match the RE.

(1,8)V/RE/

This command is the same as the interactive global command G
except that the lines that are marked during the first step are
those that do nof match the RE.

(1,8)w file

October 1983

The write command writes the addressed lines into the named
file. If the file does not exist, it is created with mode 666 (read-
able and writable by everyone), unless your wmask setting (see
sh(1)}) dictates otherwise. The currently-remembered file name is
no! changed unless file is the very first file name mentioned since
ed was invoked. If no file name is given, the currentiy-
remembered file name, if any, is used (see e and f commands); .
is unchanged. If the command is successful, the number of char-
acters written is typed. If file is replaced by !, the rest of the line
is taken to be a shell (sh(1)) command whose standard input is
the addressed lines. Such a shell command is not remembered as
the current file name.

g

S

ED(D)

ED (1)

X A key string is demanded from the standard input. Subsequent
e, r, and w commands will encrypt and decrypt the text with this
key by the algorithm of crypt(1). An explicitly empty key turns
off encryption.

($)= The line number of the addressed line is typed; . is unchanged by
this command.

tsheli command

The remainder of the line after the ! is sent to the UNIX System
shell {s2(1)) to be interpreted as a command., Within the text of
that command, the unescaped character % is replaced with the
remembered file name; if a ! appears as the first character of the
shell command, it is replaced with the text of the previous shell
command. Thus, !! will repeat the last shell command. If any
expansion is performed, the expanded line is echoed; . is
unchanged.

(.+1)<new-line>
An address alone on a line causes the addressed line to be
printed. A new-line alone is equivalent to .+1p; it is useful for
stepping forward through the buffer.

If an interrupt signal {ASCH DEL or BREAK) is sent, ed prints a ? and
returns to its command level.

Some size limitations: 512 characters per line, 256 characters per global
command list, 64 characters per file name, and 128K characters in the
buffer. The limit on the number of lines depends on the amount of user
memeory: each line takes 1 word.

When reading a file, ed discards ASCIl NUL characters and all characters
after the last new-line. Files (e.g., a.out) that contain characters not in the
ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (e.g., /) would be
the last character before a new-line, that delimiter may be omitted, in
which case the addressed line is printed. The following pairs of commands
are equivalent:

s/sl/s2 s/sl/s2/p

g/sl g/sl/p

75l 7817

EXAMPLE

ed text

would invoke the editor with the file named "text”. For further examples,
see "4 Tutorial Introduction to the UNIX Text Editor" and " Advanced Editing on
UNIX

FILES

/tmp/e# temporary; # is the process number.

ed.hup work is saved here if the terminal is hung up.
DIAGNOSTICS

2

? for command errors.
?file for an inaccessible file.
{use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that
wrote the entire buffer, ed warns the user if an attempt is made to destroy

Ociober 1983 -8 -

ED (1) ED (1)

ed’s buffer via the ¢ or ¢ commands: it prints ? and allows one to continue
editing. A second e or ¢ command at this point will take effect. The —
command-line option inhibits this feature,

SEE ALSO
crypt(1), grep(1}, sed(1), sh(1), stty(1), fspec(4), regexp(5).
A Tutorial Introduction to the UNIX Text Editor, by B. W. Kernighan.
Advanced Editing on UNLY | by B. W. Kernighan.

CAVEATS AND BUGS
A /command cannot be subject {0 a g or a v command.
The !/ command and the ! escape from the e, r, and w commands cannot
be used if the the editor is invoked from a restricted shell (see sk(1)).
The sequence \n in a RE does not match a new-line character.
The { command mishandles DEL.
Files encrypted directly with the crypr (1) command with the null key can-
not be edited.
Characters are masked to 7 bits on input.

October 1983 -9 -

gt

g
i

g

T

GREP(1} GREP(1}

. NAME
£ grep, egrep, fgrep — search a file for a pattern

SYNOPSIS
grep [options] expression [files |

gt

egrep [options I [expression 1 [files }
fgrep [options] [strings 1 [files]

DESCRIPTION

Commands of the grep family search the input files {standard input default)
for lines matching a pattern. Normally, each line found is copied to the
standard output. Grep patterns are limited regular expressions in the style
of ed(1); it uses a compact non-deterministic algorithm. Egrep patterns are
full regular expressions; it uses a fast deterministic algorithm that some-
times needs exponential space. Fgrep patterns are fixed strings; it is fast
and compact. The following options are recognized:

—v All lines but those matching are printed.

—x {(Exact) only lines matched in their entirety are printed (fgrep only).

—¢ Only a count of matching lines is printed.

—1 Only the names of files with matching lines are listed (once),
separated by new-lines.

—n Each line is preceded by its relative line number in the file.

~b Each line is preceded by the block number on which it was found.
This is sometimes useful in locating disk biock numbers by context.

—s The error messages produced for nonexistent or unreadable files are
suppressed (grep only}.

: —e expression

Same as a simple expression argument, but useful when the expression
begins with a — {does not work with grep).

—f file
The regular expression (egrep) or strings list (fgrep) is taken from the

Jile.

In all cases, the file pame is output if there is more than one input file.
Care should be taken when using the characters $, *,'[, ",], {, }, and \ in
expression, because they are also meaningful to the shell. It is safest to
enclose the entire expression argument in single quotes '...’

N’

Fgrep searches for lines that contain one of the strings separated by new-
lines.

Egrep accepls regular expressions as in ed (1), except for \{ and \), with the
addition of:

1. A regular expression followed by + matches one or more occurrences
of the regular expression.

2. A regular expression followed by ? matches 0 or 1 occurrences of the
regular expression.

3. Two regular expressions separated by | or by a new-line maich strings
that are matched by either.

4, A reguiar expression may be enclosed in parentheses {} for grouping.

The order of precedence of operators is [], then «? +, then concatenation,
then | and new-line.

October 1983 -1-

GREFP(1) GREP(1)

EXAMPLE
grep ~v -¢ ‘regular’ grep.l

reports a count of the number of lines that do not contain the word regular '

in the file "grep.1".
SEE ALSO
ed (1), sed(1), sh(1).
DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found).
BUGS
Ideally there should be only one grep, but we don’t know a single algorithm
that spans a wide enough range of space-time tradeoffs.
Lines are limited to 256 characters; longer lines are truncated.
Egrep does not recognize ranges, such as [a—zl, in character classes.

October 1933 -2

p—

o

k1

ragns

LOGIN (1) LOGIN(1)

NAME

login — sign on

SYNOPSIS

login [name [env-var ...]]

DESCRIPTION

The login command is used at the beginning of each terminal session and
allows you to identify yourself to the system. It may be invoked as a com-
mand or by the system when a connection is first established. Also, it is
invoked by the system when a previous user has terminated the initial shell
by typing a cnri-d 1o indicate an "end-of-file".

If fogin is invoked as a command, it must replace the initial command
interpreter. This is accomplished by typing:

exec login
from the initial shell.

Login asks for your user name (if not supplied as an argument), and, if
appropriate, your password. Echoing is turned off (where possible) during
the typing of your password, so it will not appear on the written record of
the session.

At some installations, an option may be invoked that will require you to
enter a second "dialup” password. This will occur only for dial-up connec-
tions, and will be prompted by the message "dialup password:". Both pass-
words are required for a successful login.

If you do not complete the login successfully within a certain period of time
(e.g., one minute), you are likely to be silently disconnected.

After a successful /login, accounting files are updated, the procedure
/etc/profile is performed, the message-of-the-day, if any, is printed, the
user-1D, the group-1D, the working directory, and the command interpreter
(usually sh{1)) is initialized, and the file .profile in the working directory is
executed, if it exists. These specifications are found in the /ete/passwd file
entry for the user. The name of the command interpreter is — followed by
ithe last component of the interpreter’s pathname (i.e., —sh). If this field
in the password file is empty, then the default command interpreter,
/bin/sh is used.

The basic environment (see environ (5)) is initialized to:

HOME = your-login-directory
PATH=:/bin:/ust/bin

SHELL = last-field-of-passwd-eniry
MAIL=/usr/mail/ your-login-name
TZ= timezone-specification

The environment may be expanded or modified by supplying additional
arguments to fogin, either at execution time or when login requests your
login name. The arguments may take either the form xxx or xxx=yyp.
Arguments without an equal sign are placed in the environment as

L n=xxx
where # is a number starting at 0 and is incremented each lime a new vari-
able name is required. Variables containing an = are placed into the

environment without modification. If they already appear in the environ-
ment, then they replace the older value. There are two exceptions. The
variables PATH and SHELL cannot be changed. This prevents people,

October 1983 -1-

LOGIN (1) LOGIN(1)

logging into restricted shell environments, from spawning secondary shells
which aren’t restricted. Both fogin and getty understand simpie single char-
acter quoting conventions. Typing a backslash in front of a character
quotes it and allows the inclusion of such things as spaces and tabs.

EXAMPLE
At the beginning of each terminal session, the following sort of message is
dispiayed on the screen:

UniSoft 68000 UNIX
Jlogin:

to which a user name is the appropriate response.

FILES

fete/utmp accounting

fete/wimp accounting

Jusr/mail/ your-name mailbox for user your-name

Jetc/ motd message-of-the-day

/etc/passwd password file

/etc/profile systemwide personal profile (sh (1))

fetc/cshrc systemwide personal csh startup (csk (1))

.profile personal profile {(sh (1))

Jogin personal csh startup used at login time (esh (1))

.cshre personal csh startup {csh (1))

Jogout personal csh lopout used at logout time (esh (1))
SEE ALSO

mail(1), newgrp(1), sh(1), su(l}, passwd(4), profile(4), environ(5).
DIAGNOSTICS

Login incorrect
if the user name or the password cannot be matched.

No shell, cannot open password file, or no directory
consult a UNIX system programming counselor.

No utmp entry. You must exec "login" from the lowest level "sH'.
if you attempted to execute login as a command without using the
shell's exec internal command or from other than the initial shell.

Ocrober 1983 -2

gt

i

et

Ls(1) Ls(1)

o, NAME
o Is — list contents of directories
 SYNOPSIS

Is [~logtasdrucifp] names

DESCRIPTION
For each directory named, /s lists the contents of that directory; for each
file named, is repeats its name and any other information requested. By
default, the output is sorted alphabetically. When no argument is given,
the current directory is listed. When several arguments are given, the argu-
ments are first sorted appropriately, but file arguments are processed before
directories and their contents. There are several options:

—1 List in long format, giving mode, number of links, owner, group, size
in bytes, and time of last modification for each file (see below). If
the file is a special file, the size field will contain the major and minor
device numbers, rather than a size.

—o The same as —1, except that the group is not printed.
—g The same as —1, except that the owner is not printed.
—t Sort by time of last modification (latest first} instead of by name.

—a List all entries; in the absence of this option, entries whose names
begin with a period (.) are nof listed.

—s Give size in blocks (including indirect blocks) for each entry.

—d If argument is a directory, list only its name; often used with —1 1o
get the status of a directory.

% Ei
g

—r Reverse the order of sort to get reverse alphabetic or oldest first, as
appropriaie,

—u Use time of last access instead of last modification for sorting (with
the —t option)} and/or printing {with the —! option)}.

—c Use time of last modification of the inode (mode, etc.) instead of last
modification of the file for sorting (—t) and/or printing {— 1.

—i For each file, print the i-number in the first column of the report.

—f Force each argument o be interpreted as a directory and list the name
found in each slot. This option turns off ~I, —t, —s, and —r, and
turns on —a; the order is the order in which entries appear in the
directory.

~p Put a slash after each filename if that file is a directory. Especially
useful for CRT terminals when combined with the pr(1) command as
follows: Is —p [pr —5 —t —w80.

The mode printed under the —1 option consists of 11 characters that are
interpreted as follows:

The first character is:

if the entry is a directory;

if the entry is a block special file;

if the entry is a character special file;

if the entry is a fifo {a.k.a. "named pipe") special file;
if the entry is an ordinary file.

|'an:=-'n.

October 1983 -1-

Ls(1) L5(1)

The next 9 characters are inlerpreted as three sets of three bits each.
The first set refers to the owner’s permissions; the next to permis-
sions of others in the user-group of the file; and the last to all others.
Within each set, the three characters indicate permission to read, to
write, and to execute the file as a program, respectively. For a direc-
tory, "execute” permission is interpreted to mean permission to search
the directory for a specified file.

The permissions are indicated as follows:

if the file is readable;

if the file is writable;

if the file is executable;

if the indicated permission is nor granted.

The group-execute permission character is given as s if the file has
set-group-ID mode; likewise, the user-execute permission character is
given as s if the file has set-user-1D mode. The last character of the
mode (normally x or —) is t if the 1000 {octal} bit of the mode is on;
see chmod (1) for the meaning of this mode. The indications of set-ID
and 10600 bit of the mode are capitalized {S and T respectively) if the
corresponding execute permission is nor set.

| * &

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

EXAMPLE
Is -] /etc

will list ail entries in /et¢ in long format.

FILES
fetc/passwd to getuserIDs forls —landls —o.
Jete/group to get group IDs for Is —l and Is —g.

SEE ALSO
chmod(1), find(1).

October 1983 -2-

4 g
S’

s

gt

Bt

MKDIR (1) MKDIR (1)

NAME
mkdir — make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION
Mkdir creates specified directories in mode 777 (possibly altered by
umask (1)). Standard entries, ., for the directory itself, and .., for its
parent, are made automatically. These and other directories beginning with
. are not visible in listings unless you use the -a option to Is.

Midir requires write permission in the parent directory,

EXAMPLE
mkdir letters

creates a directory letters as a subdirectory of the directory you are in at
the time you employ the command.

SEE ALSO
rm(1}, sh{1), umask(1).

DIAGNOSTICS
Micdir returns exit code 0 if all directories were successfully made; other-
wise, it prints a diagnostic and returns non-zero.

October 1983 -1-

MORE(1) (UniSoft) MORE{(1)}

NAME

more — file perusal filter for crt viewing
SYNOPSIS

more [—~dfln] [+linenumber | +/pattern 1 { name ... 1|
DESCRIPTION

More is a filter which allows examination of a continuous text one screenful
at a time on a CRT terminal, [t normally pauses after each screenful, print-
ing "--More--" at the bottom of the screen.

If the user then types a carriage return, one more line is displayed. If the
user hits a space, another screenful is displayed. If a space is preceded by
an initeger, that number of lines is printed. If the user hits d or control-D,
11 more lines are displayed (a "scroll").

More looks in the file /ete/termeap to determine terminal characteristics
and to determine the default window size. On a terminal capable of
displaying 24 lines, the default window size is 22 lines.

If more is reading from a file, rather than a pipe, then a percentage is
displayed along with the "--More--" prompt. This gives the fraction of the
file (in characters, not lines) that has been read so far.

The following options are available:

~n is an integer which is the size (in lines) of the window which more will
use instead of the default.

—d& causes more to prompt the user with the message "Hit space to con-
tinue, Rubout to abort” at the end of each screenful.

—f causes more to count logical, rather than screen lines. That is, long
lines are not folded. This option is recommended if nroff output is
being piped through u!, since the latter may generate escape
sequences. These escape sequences contain characters which would
ordinarily occupy screen positions, but which do net print when they
are sent to the terminal as part of an escape sequence. Thus more
may think that lines are longer than they actually are, and fold lines
erroneously.

—1 causes more not to treat control-L {(form feed) specially. If this option
is not given, more will pause after any line that contains a control-L,
as if the end of a screenful had been reached. Also, if a file begins
with a form feed, the screen will be cleared before the file is printed.

+ linenumber
option causes more to start up at finenumber

+ / pattern
causes more to start up two lines before the line containing the regular
expression pattern.

Once inside more, other sequences may be typed when more pauses. The
sequences and their effects are as follows (7 is an optional integer argu-
ment, defaulting to 1) :

iz same as typing a space except that i, if present, becomes the new win-
dow size.

is skip i lines and print a screenful of lines

October 1983 .1 -

gy

“*m.w"

b 3
st

MORE(1) (UgiSoft) MORE (1)

if skip i screenfuls and print a screenful of lines

in skip to the /-th next file given in the command line (skips to last file
if n doesn’t make sense)}

ip skip to the i-th previous file given in the command line. If this com-
mand is given in the middle of printing out a file, then more goes
back to the beginning of the file. If / doesn’t make sense, more skips
back to the first file. If more is not reading from a file, the bell is
rung and nothing else happens.

qorQ
Exit from more.

ifexpr
search for the /-th occurrence of the regular expression expr. If there
are less than / occurrences of expr and the input is a file (rather than
a pipe}, then the position in the file remains unchanged. Otherwise, a
screenful is displayed, starting iwo lines before the place where the
expression was found. The user’s erase and Kkill characters may be
used to edit the regular expression. Erasing back past the first column
cancels the search command.,

{(single quote) Go to the point from which the last search started. If
no search has been performed in the current file, this command goes
back 1o the beginning of the file.

lcommand
invoke a shell with command,

The commands take effect immediately, i.e., it is not necessary to type a
carriage return. Up to the time when the command character itself is
given, the user may hit the line kill character 1o cancel the numerical argu-
ment being formed. In addition, the user may hit the erase character to
redisplay the *--More--(xx%)" message.

At any time when output is being sent 1o the terminal, the user can hit the
quit key (normally control—\). More will stop sending output, and will
display the usual “--More--" prompt. The user may then enter one of the
above commands in the normal manner. Unfortunately, some output is
It when this is done, due to the fact that any characters waiting in the

~+erminal’s outpul queue are flushed when the quit signal occurs.

The terminal is set to noecho mode by this program so that the output can
be continuous, Whal you type will thus not show on your terminal, except
for the "/" and "!" commands.

If the standard output is not a teletype, then more acts just like cat, except
that a header is printed before each file (if there is more than one),

EXAMPLE

nroff —ms +2 doc.n| more
would show the nroff output on the terminal screen.

FILES
fetc/termcap Terminal data base
Jusr/lib/more.help Help file

- AUTHOR

e

Eric Shienbrood

October 1983 -2-

oD(1) oD(1)

NAME
od — octal dump

SYNOPSIS
od [—bedosx] [file] [[+ Joffset! . 1[b]]

DESCRIPTION
Od dumps file in one or more formats as selected by the first argument. If
the first argument is missing, —o is defanlt. The meanings of the format
options are:

—b Interpret bytes in octal.

—¢ Interpret bytes in ASCIl. Certain non-graphic characters appear as C
escapes: null=\0, backspace=\b, form-feed=\f, new-line=\n,
return=\r, tab=\t; others appear as 3-digit octal numbers.

—d Interpret words in unsigned decimal.

—o Interpret words in octal.

—s Interpret 16-bit words in signed decimal.

—x Interpret words in hex.

The file argument specifies which file is to be dumped. If no file argument
is specified, the standard input is used.

The offset argument specifies the offset in the file where dumping is to
commence. This argument is normally interpreted as octal bytes. If . is
appended, the offset is interpreted in decimal. If b is appended, the offset
is interpreted in blocks of 512 bytes. If the file argument is omitted, the
offset argument must be preceded by +.

Dumping continues until end-of-file.

EXAMPLE
od -d filea +2

produces an octal dump of "filea” divided up into 32-bit words expressed in
decimal equivalents with the dump starting point offset by 2 octal bytes.

SEE ALSO
dump(1).

October 1983 -1~

R

PR(1) PR (1)

-p Pause before beginning each page if the output is directed to a ter-

3 minal {pr wili ring the bell at the terminal and wait for a carriage
return).
o | Use form-feed character for new pages (default is to use a sequence

of line-feeds). Pause before beginning the first page if the standard
output is associated with a terminal.

-r Print no diagnostic reports on failure to open files.

—t Print neither the five-line identifying header nor the five-line trailer
normally supplied for each page. Quit printing after the last line of
each file without spacing to the end of the page.

—sc¢ Separate colurnns by the single character ¢ instead of by the
appropriate number of spaces {default for cisa tab).

EXAMPLE
pr —3dh "file list" filel file2

prints "filel" and "file2" as a double-spaced, three-column listing headed by
"file list".

pr —ed =t < filel > file2
writes "filel” on “file2", expanding tabs to columns 10, 19, 28, 37,

FILES
/dev/ttys to suspend messages

SEE ALSO
cat(1).

Ociober 1983 -2-

RM (1) RM(1)

NAME
rm, rmdir -~ remove files or directories

SYNOPSIS
rm [—fri] file ..

rmdir dir ...

DESCRIPTION
Rm removes the entries for one or more files from a directory. If an entry
was the last link to the file, the file is destroyed. Removal of a file requires
write permission in its directory, but neither read nor write permission on
the file itself.

If a file has no write permission and the standard input is a terminal, its
permissions are printed and a line is read from the standard input. If that
line begins with y the file is deleted, otherwise the file remains. No ques-
tions are asked when the —f option is given or if the standard input is not
a terminal.

If a designated file is a directory, an error comment is printed unless the
optional argument —r has been used. In that case, rm recursively deletes
the entire contents of the specified directory, and the directory itself.

If the —i (interactive) option is in effect, rm asks whether to delete each
file, and, under —r, whether to examine each directory.

Rmdir removes entries for the named directories, which must be empty.

EXAMPLE
rm -t dirname

will remove the entire contents of the named directory and all subdirec-
tories, and finally the directory itself, with no questions asked.

SEE ALSO
unlink (2). .

DIAGNOSTICS
Generally self-explanatory. It is forbidden to remove the file .. merely to
avoid the antisocial consequences of inadvertently doing something like:

Fm —r.*

October 1983 -1-

S

SH(1)

NAME

SH{1)

sh, rsh — shell, the standard/restricted command programming language

SYNOPSIS

sh [—ceiknrstuvx 1 [args |
rsh [—ceiknrstuvx | { args]

DESCRIPTION

Sh is a command programming language that executes commands read
from a terminal or a file. Rsh is a restricted version of the standard com-
mand interpreter sh; it is used to set wp login names and execution
environments whose capabilities are more controlled than those of the stan-
dard shell. See [nvecation below for the meaning of arguments to the shell.

Commands.

A simple-command is a sequence of non-blank words separated by blanks (a
blank is a tab or a space). The first word specifies the name of the com-
mand to be executed. Except as specified below, the remaining words are
passed as arguments to the invoked command. The command name is
passed as argument 0 (see exec(2)). The value of a simple-command is its
exit status if it terminates normally, or (octal) 200+ srares if it terminates
abnormally (see signal{2) for a list of status values).

A pipeline is a sequence of one or more commands separated by | (or, for
historical compatibility, by *). The standard output of each command but
the last is connected by a pipe(2) to the standard input of the next com-
mand. Each command is run as a separate process; the shell waits for the
last command to terminate.

A list is a sequence of one or more pipelines separated by ;, &, &&, or [,
and optionally terminated by ; or & Of these four symbols, ; and & have
equal precedence, which is lower than that of && and § . The symbols &&
and | also have equal precedence. A semicolon (;) causes sequential exe-
cution of the preceding pipeline; an ampersand (&) causes asynchronous
execution of the preceding pipeline (i.e., the shell does nor wait for that
pipeline to finish). The symbol && (§) causes the list following it to be
executed only if the preceding pipeline returns a zero (non-zero) exit
status. An arbitrary number of new-lines may appear in a fist, instead of
semicolons, to delimit commands.

A command is either a simple-command or one of the following. Unless
otherwise stated, the value returned by a command is that of the last
simple-command executed in the command.

for name [in word ...] do list done
Each time a for command is executed, name is set 10 the next word
taken from the in word list.. If in word ... is omitted, then the for
command executes the do /ist once for each positional parameter that
is set {see Parameter Substitution below}. Execution ends when there
are no more words in the list,

case word in { pattern [| pattern] ...} list 53] ... esac
A case command executes the /ist associated with the first patrern that
matches word. The form of the patlerns is the same as that used for
file-name generation (see File Name Generation below).

if list then fist [elif fist then fist 1 ... [else fist] fi
The list following if is executed and, if it returns a zero exit status,
the list following the first then is executed. Otherwise, the fiss

October 1983 -1-

SH(1) SH(I)

following elif is executed and, if its value is zero, the fist following the ...
next then is executed. Failing that, the else /list is executed. If no = &
else list or then fist is executed, then the if command returns a zero
exit status.

while fist do list done
A while command repeatedly executes the while fist and, if the exit
status of the last command in the list is zero, executes the do list; oth-
erwise the loop terminates. If no commands in the do fist are exe-
cuted, then the while command returns a zero exit status; until may
be used in place of while to negate the loop termination test.

(fisr)
Execute /list in a sub-shell.

{ tist:)
list is simply executed.

The following words are only recognized as the first word of a command

and when not quoted:

if then else elif fi case esac for while until do done { }

Comments.
A word beginning with # causes that word and all the following characters
up to a new-line to be ignored.

Command Substitution.
The standard output from a command enclosed in a pair of grave accents (
‘ *) may be used as part or all of a word; trailing new-lines are removed.

Parameter Substitution,
The character $ is used to introduce substitutable parameters. Positional
parameters may be assigned values by set. Variables may be set by writing:

o

name= value { name= value | . ..
Pattern-matching is not performed on value.

${ parameter)
A parameter is a sequence of letters, digits, or underscores (a name),
a digit, or any of the characters », #, ?, —, §, and !. The value, if
any, of the parameter is substituted. The braces are required only
when parameter is followed by a letter, digit, or underscore that is not
to be interpreted as part of its name. A name must begin with a letter
or underscore. If parameter is a digit, then it is a positional parameter.
If paramerter is = or then all the positional parameters, starting with
$1, are substituted (separated by spaces). Parameter $0 is set from
argument zero when the shell is invoked.

${ parameter :— word)
If parameter is set and is non-null, then substitute its value; otherwise
substitute word.

81 parameter := word)
If parameter is not set or is null, then set it to word: the value of the
parameter is then substituted. Positional parameters may not be
assigned to in this way.

${ parameter 7 word)
If parameter is set and is non-null, then substitute its value; otherwise,
print word and exit from the shell. If word is omitted, then the mes-
sage "parameter null or not set" is printed.

October 1983 -2

e’

SH(1)

SH(1)

${ parameter 4 word)
If parameter is set and is non-null, then substitute word, otherwise
substitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted
string, so that, in the following example, pwd is executed only if d is not
set or is null

echo ${d:— ‘pwd ‘}

If the colon (:) is omitted from the above expressions, then the shell only
checks whether parameter is set or not.

The following parameters are automatically set by the sheil:

The number of positional parameters in decimal.

- Flags supplied to the shell on invocation or by the set com-
mand.

? The decimal value returned by the last synchronously exe-
cuted command.

S The process number of this shell.

! The process number of the last background command
invoked.

The following parameters are used by the shell:

HOME The default argument (home directory) for the cd com-
mand.

PATH The search path for commands (see Execurion below). The
user may not change PATH if executing under rsh.

CDPATH The search path for the ¢d command.

MAIL If this variable is set to the name of a mail file, then the
shell informs the user of the arrival of mail in the specified

file.
PS1 Primary prompt siring, by default "$".
P52 Secondary prompt siring, by default "> ".
IFS Internal field separators, normally space, tab, and new-line.

The shell gives default values to PATH, PS1, PS2, and I¥S, while HOME
and MAIL are not set at all by the shell {although HOME is set by
login (1)),

Blank Interpretation.

After parameter and command substitution, the resulls of substitution are
scanned for internal field separator characters (those found in IFS) and split
into distinct argumenis where such characters are found. Explicit null argu-
ments {"" or '’} are retained. Implicit null arguments (those resulting
from parameters that have no values) are removed.

File Name Generation.

Following substitution, each command word is scanned for the characters =,
?,and [. If one of these characters appears, then the word is regarded as a
pattern. The word is replaced with alphabetically sorted file names that
match the pattern, If no file name is found that matches the pattern, then
the word is left unchanged. The character . at the start of a file name or
immediately following a /, as well as the character / itself, must be
maiched explicitly.

. Matches any string, including the aull string.

October 1983 -3-

SH{1) SH(1)

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of charac-
ters separated by — matches any character lexically between the
pair, inclusive. If the first character following the opening " [" is
a"!", then any character not enclosed is maiched.

Quoting.
The following characters have a special meaning Lo the shell and cause ter-
mination of a word unless quoted:

: & () |~ < > new-line space tab

A character may be guoted (i.e., made to stand for itself) by preceding it
with a \. The pair \new-line is ignored. All characters enclosed between a
pair of single quote marks {*”), except a single quote, are quoted. Inside
double quote marks (""), parameter and command substitution occurs and
\ quotes the characters \, *, *, and §. "$+" is equivalent to "$1 $2 ..."
whereas "$@" is equivalent to "$1 $2 ...".

[}

Prompting.
When used interactively, the shell prompts with the value of PS1 before
reading a command. If at any time a new-line is typed and further input is
needed to complete 2 command, then the secondary prompt (i.e., the value
of PS2) is issued.

Input/Output.
Before a command is executed, its input and output may be redirected
using a special notation interpreted by the shell. The following may appear
anywhere in a simple-command or may precede or follow a command and
are nof passed on to the invoked command; substitution occurs before word
or digit is used:

< word
Use file word as standard input (file descriptor 0).

> word
Use file word as standard output (file descriptor 1), If the file does
not exist then it is created; otherwise, it is truncated to zero length.

>> word
Use file word as standard ocutput. If the file exists, then ouiput is
appended to it (by first seeking to the end-of-file); otherwise, the
file is created.

<< [—] word
The shell input is read up to a line that is the same as word, or o
an end-of-file. The resulling document becomes the standard
input, If any character of word is quoted, then no inlerpretation is
placed upon the characters of the document; otherwise, parameter
and command substitution occurs, (unescaped) \new-line is
ignored, and \ must be used {o quote the characters \, 8, *, and the
first character of word. H — is appended to <<, then all leading
tabs are stripped from word and from the document.

< & digit
The standard input is duplicated from file descriptor digir (see
dup (2}, Similarly for the standard cutput using >.

< & — The standard input is closed. Similarly for the standard output
using >.

October 1983 -4 -

R

g

p—

g

SH(1)

SH(1)

If one of the above is preceded by a digit, then the file descriptor created is
that specified by the digit (instead of the default 0 or 1}. For example:

2> &1
creates file descriptor 2 that is a duplicate of file descriptor 1.

If a command is followed by &, then the default standard input for the
command is the empty file /dev/null. Otherwise, the environment for the
execution of a command contains the file descriptors of the inveking shell
as modified by input/output specifications.

Redirection of output is not allowed in the restricted shell.

Environment.

The environment (see environ (5)) is a list of name-value pairs thal is passed
to an executed program in the same way as a normal argument list. The
shell interacts with the environment in several ways. On invocation, the
shell scans the environment and creates a parameter for each name found,
giving it the corresponding value. Executed commands inherit the same
environment. If the user modifies the values of these parameters or creates
new ones, none of these affecis the environment unless the expert com-
mand is used to bind the shell’s parameter to the environment. The
environment seen by any executed command is thus composed of any
unmodified name-value pairs originally inherited by the shell, plus any
modifications or additions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it
with one or more assignments to parameters. Thus:

TERM =450 cmd args and
{export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned).

If the —k flag is set, alf keyword argumenis are placed in the environment,
even if they occur after the command name. The following first prints a=b
¢ and then ¢

echo a=b ¢
set —k
echo a=b ¢

Signals.

The INTERRUPT and QUIT signals for an invoked command are ignored if
the command is followed by &; otherwise signals have the values inherited
by the shell from its parent, with the exception of signal 11 (but see also
the trap command below).

Execution.

Each time a command is executed, the above substitutions are carried out,
Except for the Special Commands listed below, a new process is created and
an attempt is made to execute the command via exec(2).

The shell parameter PATH defines the search path for the directory contain-
ing the command. Alternative directory names are separated by a colen
(:). The default path is :/bin:/usr/bin (specifying the current directory,
/bin, and /usr/bin, in that order). Nole that the current directory is
specified by a nuill path name, which can appear immediately after the equal
sign or between the colon delimiters anywhere else in the path list. If the

Ociober 1983 -5-

SH(1) SH(1)

command name contains a / then the search path is not used; such com-
mands will not be executed by the restricted shell. Otherwise, each direc-
tory in the path is searched for an executable file. If the file has execute
permission but is not an a.out file, it is assumed to be a file containing sheil
commands. A sub-shell (ie., a separate process) is spawned to read it. A
parenthesized command is also execuled in a sub-shell.

Special Commands.
The following commands are executed in the shell process and, except as
specified, no input/output redirection is permitted for such commands:

: No effect; the command does nothing. A zero exit code is returned.

. file
Read and execute commands from fife and return. The search path
specified by PATH is used to find the directory containing file.

break [»]
Exit from the enclosing for or while loop, if any, If # is specified,
then break n levels.

continue [#]
Resume the next iteration of the enclosing for or while loop. If n is
specified then resume at the #-th enclosing loop.

cd [arg]
Change the current directory to arg. The shell parameter HOME is
the default arg. The shell parameter CDPATH defines the search path
for the directory containing arg. Alternative directory names are
separated by a colon (:). The default path is <null> (specifying the
current directory). Note that the current directory is specified by a
null path name, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list. If arg
begins with a /, then the search path is not used. Otherwise, each
directory in the path is searched for arg. The cd command may not
be executed by rsh.

eval [arg ...]
The arguments are read as input to the shell and the resulting
command(s) executed.

exec [arg ...]
The command specified by the arguments is executed in place of this
shell without creating a new process. Input/output arguments may
appear and, il no other arguments are given, cause the shell
input/cutput to be modified.

exit [nl
Causes a shell to exit with the exit status specified by ». If # is omit-
ted, then the exit status is that of the last command executed (an
end-of-file will also cause the shell to exit.)

export [name ...]
The given names are marked for automaltic export to the environment
of subsequently-executed commands. If no arguments are given, then
a list of all names that are exported in this shell is printed.

newgrp [arg ...]
Equivalent to exec newgrp arg ...,

read [name ... |

One line is read from the standard input and the first word is assigned

to the first name, the second word to the second name, ete., with left-

over words assigned to the last name. The return code is 0 unless an

October 1983 -6

S

Y
3
&

o

SH(1)

SH{I)

end-of-file is encountered.

readonly [name ...]

The given names are marked readonly and the values of the these
names may not be changed by subsequent assignment. If no argu-
ments are given, then a list of all readonly names is printed.

set [— —ekntuvx [arg ...]]

—e Exit immediately if a command exits with 2 non-zero exit status,
—k All keyword arguments are placed in the enviroament for a
command, not just those that precede the command name.

—n Read commands but do not execute them.

—t Exit after reading and executing one command.

—u Treat unset variables as an error when substituting.

—v Print shell input lines as they are read.

—Xx Print commands and their arguments as they are executed.

-~ — Do not change any of the flags: useful in setting $1 to —.

Using + rather than — causes these flags to be turned off. These
flags can also be used upon invocation of the shell. The current set of
flags may be found in $~. The remaining arguments are positional
parameters and are assigned, in order, to $1, $2, If no arguments
are given, then the values of all names are printed.

shift [n]

The positional parameters from $n+1 ... are renamed 81 If n is
not given, it is assumed to be 1.

test Evaluate conditional expressions. See resi(1) for usage and descrip-
tion.

times
Print the accumulated user and system times for processes run from
the shell.

trap [argl [n]...

arg is a command to be read and executed when the shell receives
signal(s} #. (Note that arg is scanned once when the trap is set and
once when the trap is taken.) Trap commands are executed in order of
signal number. Any attemp! to set a trap on a signal that was ignored
on entry to the current shell is ineffective. An attempt to frap on sig-
nal 11 {memory fault) produces an error. If arg is absent, then all
trap(s) n are reset to their original values. If arg is the null string,
then this signal is ignored by the shell and by the commands it
invokes. If n is 0, then the command arg is executed on exit from
the shell. The trap command with no arguments prints & list of com-
mands associated with each signal number.

whimit [—fp][n]

imposes a size limit of »

—1 imposes a size limit of » blocks on files written by child processes
(files of any size may be read). With no argument, the current
limit is printed.

= p changes the pipe size to # {(UNIX/RT only).

If no option is given, —f is assumed.

umask [nan]

The user file-creation mask is set to nun (see wmask(2)). If ann is
omitted, the current value of the mask is printed.

wait [n]

Ortober 1983

Wait for the specified process and report its termination status. If # is
not given, then all currently active child processes are waited for and

-7.

SH(1) SH{1)

the return code is zero.

Invocation.

If the shell is invoked through exec(2) and the first character of argument
zero is —, commands are initially read from /ete/profile and then from
SHOME/ .profile, if such files exist. Thereafter, commands are read as
described below, which is also the case when the shell is invoked as
/bin/sh. The flags below are interpreted by the shell on invocation only;
Note that unless the —e¢ or —s flag is specified, the first argument is
assumed to be the name of a file containing commands, and the remaining
arguments are passed as positional parameters to that command file:

—¢ string 1f the —c flag is present, then commands are read from siring.

-5 If the —s flag is present or if no arguments remain, then com-
mands are read [rom the standard input. Any remaining argu-
ments specify the positional parameters. Shell output is written
to file descriptor 2.

—i If the —i flag is present or if the shell input and output are
attached to a terminal, then this shell is interactive. In this case,
TERMINATE is ignored {so that kill 0 does not kill an interactive
shell) and INTERRUPT is caught and ignored (so that wait is
interruptible). In all cases, QUIT is ignored by the shell.

-r If the —r flag is present, the shell is a restricted shell.
The remaining flags and arguments are described under the set command
above.

Rsh Only.

Rsh is used to set up login names and execution environments whose capa-
bilities are more controlled than those of the standard shell. The actions of
rsh are identical to those of sh, except that the foliowing are disallowed:

changing directory {see ¢d(1)),

setting the value of $SPATH,

specifying path or command names containing /,
redirecting output (> and > >).

The restrictions above are enforced after .profile is interpreted.

When a command io be executed is found to be a shell procedure, rsh
invokes sh to execute it. Thus, it is possible to provide 1o the end-user
shell procedures that have access to the full power of the standard shell,
while imposing a limited menu of commands; this scheme assumes that the
end-user does not have write and execute permissions in the same direc-
tory.

The net effect of these rules is that the writer of the .profile has complete
control over user actions, by performing guaranteed setup actions and leav-
ing the user in an appropriate directory (probably not the login directory},

The system administrator often sets up a directory of commands (i.e.,
fusr/rbin) that can be safely invoked by rsh. Some systems also provide a
restricted editor red.

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell to return
a non-zero exit status. If the shell is being used non-interactively then exe-
cution of the shell file is abandoned. Otherwise, the shell returns the exit
status of the last command execuled (see also the exit command above).

Ocrober 1983 -8-

o

SH(1)

SH(1)

_IXAMPLE

FILES

sh -x scriptl

will execute each command in "scriptl”, echoing the command just before
executing it.

fetc/profile
$HOME/ .profile
/tmp/sh+*
/dev/null

SEE ALSO

BUGS

L
gt

cd(1), env(l), login(l), newgrp(l), test(1), umask(l}, dup(2), exec(2),
fork(2), pipe(2), signal(2), ulimit(2), umask(2), wait(2), a.out(4),
profile(4), environ(5).

The command readonly (without arguments) produces the same output as
the command export.

If << is used to provide standard input to an asynchronous process
invoked by &, the shell gets mixed up about naming the input document; a
garbage file /tmp/she is created and the shell complains about not being
able to find that file by another name.

October 1983 -9~

SORT (1) SORT (1)

NAME

sort — sort and/or merge files

SYNOPSIS

sort [—~cmubdfinrtx] [+ posl f—pos2]] ... [—o outpul] [names]

DESCRIPTION

Sort sorts lines of all the named files together and writes the resuit on the
standard output. The name — means the standard input. If no input files
are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by
bytes in machine collating sequence. The ordering is affected globally by
the following options, one or more of which may appear.,

b Ignore leading blanks (spaces and tabs) in field comparisons.

d "Dictionary" order: only letters, digits and blanks are significant in com-
parisons.

f Fold upper case letters onto lower case,

i Ignore characters outside the ASCH range 040-0176 in non-numeric
comparisons.

n An initial numeric string, consisting of optional blanks, optional minus
sign, and zero or more digits with optional decimal point, is sorted by
arithmetic value. Option n implies option b.

r Reverse the sense of comparisons.
tx "Tab character” separating fields is x.

The notation +pos! — pos2 restricts a sort key to a field beginning at pos/

and ending just before pos2. Posl and pos? each have the form m. n,
optionally followed by one or more of the flags bdfinr, where m tells a
number of fields to skip from the beginning of the line and » tells a
number of characters to skip further. If any flags are present they override
all the giobal ordering options for this key. If the b option is in effect n is
counted from the first non-blank in the field; b is attached independently to
pos2. A missing .n means .0; a missing — pos2 means the end of the line.
Under the —tx option, fields are strings separated by x; otherwise fields
are non-empty non-blank strings separated by blanks.

When there are multiple sort keys, later keys are compared only after all
earlier keys compare equal. Lines that otherwise compare equal are
ordered with all bytes significant.

These option arguments are also understood:

¢ Check that the input file is sorted according to the ordering rules; give
no output unless the file is out of sort.

m Merge only, the input files are already sorted.

u Suppress all but one in each set of equal lines. Ignored bytes and bytes
outside keys do not participate in this comparison.

o The next argument is the name of an output file to use instead of the
standard output. This file may be the same as one of the inputs.

EXAMPLE

sort —u +0f +0 list

October 1983 -1~

—

SORT(1) SORT(1}

PN prints in alphabetical order all the unique spellings in a list of words {capi-
% talized words differ from uncapitalized).

sort —t: <+ 2n fetc/passwd

prints the password file (passwd(4)) sorted by user ID- (the third colon-
separated field).

sort —um +0 —1 dates

print the first instance of each month in an already sorted file of (month-
day) entries (the options —um with just one input file make the choice of a
unique representative from a set of equal lines predictable).

FILES
Jusr/tmp/stm?77?
SEE ALSO
comm(1), join(1), uniq(1).

DIAGNOSTICS
Comments and exits with non-zero status for various trouble conditions
and for disorder discovered under option —c.

BUGS
Very long lines are silently truncated.

October 1983 -2-

STTY (1) STTY (1)

NAME

stty — set the options for a terminal
SYNQPSIS

stty [—a] [—g] [options]
DESCRIPTION

Sty sets certain terminal I/0 options for the device that is the current stan-
dard input; without arguments, it reports the settings of certain options;
with the —a option, it reports all of the option settings; with the —g
option, it reports current settings in a form that can be used as an argu-
ment to another s#y command. Detailed information about the modes
listed in the first five groups below may be found in termio (7) for asynchro-
nous lines in the UriPlus¥ Administrator’s Manual. Options in the last
group are implemented using options in the previous groups. Nole that
many combinations of options make no sense, but no sanity checking is
performed. The options are selected from the following:
Control Modes

parenb (—parenb)
paroedd (- parodd)
¢55 ¢56 ¢s7 cs8

0

enable (disable) parity generation and detection.
select odd (even) parity.

select character size (see termio (7)),

hang up phone line immediately.

50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 exta exth

hupel (—hapel)

hup {—hup)
estopb (—estoph)
cread (—cread)
clocal (—clocal)

Input Modes

ignbrk (—igabrk)
brkint {—brkint)
ignpar (- ignpar)
parmrk (—parmrk)
inpek (—inpck)
istrip (—istrip)
inler (—inler)
igner (—igncr)
iernl (—icrnl)

fucle {~iucle)

ixon {—ixon)

ixany (—ixany)
ixoff (—ixoff)

Qutput Modes

October 1983

Set terminal baud rate to the number given, if pos-
sible. (Al speeds are not supported by all
hardware interfaces.}

hang up (do not hang up) a DATA-PHONE® data
set connection on last close.

same as hupel {~ hupel).

use two {one) stop bits per character.

enable (disable) the receiver.

assume a line without (with) modem control.

ignore (do not ignore) break on input,

signal {do not signa}) INTR on break.

ignore (do not ignore) parity errors.

mark {do not mark) parity errors (see rermio (7).
enable (disable) input parity checking.

strip (do not strip) input characters to seven bits.
map {do not map) NL to CR on input.

ignore (do not ignore) CR on input.

map (do not map) CR to NL on input.

map (do not map) upper-case alphabetics to lower
case on input,

enable (disable) START/STOP output control. Qut-
put is stopped by sending an ASCIH DC3 and started
by sending an ASCIH BCl.

allow any character (only DC1) to restart cutput.
request that the systerm send (not send)
START/STO?P characters when the input queue is
nearly empty/full.

St

STTY (1)

opost {—opost)
olcue (—oleuc)

onler (—onler)
ocrnl (—ocrnl)
onocr {—onocr)
onlret {—onlret)

ofill {—ofill}
ofdel (—ofdel)
erd erl er2 cr3

nlf nli
tab0 tabl tab2 tab3

bs0 bsl
fforf1
vi0 vil

Local Modes

isig (—isig)
icanon (—icanon)
xcase (-xcase)
echo (—echo)

echoe (—echoe)

echok (—echok)
ke {~I1fke)
echonl {(—echonl)
nofish {—noflsh)
stwrap (—stwrap)

stflush (—stflush)

stappl {—stappl}

Control Assignments

control-character ¢

Cerober 1983

STTY (1)

post-process cutput {do not post-process output;
ignore all other output modes),

map (do not map) lower-case alphabetics to upper
case on output.

map {do not map) NL to CR-NL on outpul.

map (do not map} CR to NL on output.

do not (do) output CRs at column zero.

on the terminal NL performs (does not perform)
the CR function.

use fill characters (use timing) for delays.

fill characters are DELs (NULs).

select style of delay for carriage returns (see ter-
mio (7).

select style of delay for line-feeds (see rermio (7)).
select style of delay for horizontal tabs (see rer-
mio (7)),

select style of delay for backspaces (see termio(7)).
select style of delay for form-feeds (see termio{7)).
select style of delay for vertical tabs {(see ter-
mio (7)),

enable (disable) the checking of characters against
the special control characters INTR and QUIT.
enable (disable) canonical input (ERASE and KILL
processing).

canonical (unprocessed) upper/lower-case presen-
tation.

echo back (do not echo back) every character
typed.

echo {do not echo) ERASE character as a
backspace-space-backspace string. Note: this mode
will erase the ERASEed character on many CRT ter-
minals; however, it does nor keep track of column
position and, as a resull, may be confusing on
escaped characters, tabs, and backspaces.

echo {do not echo) NL after KILL character.

the same as echok (- echok); obsolete.

echo (do not eche} NL.

disable (enable) flush after INTR or QUIT.

disable (enable) truncation of lines longer than 79
characters on a synchronous line.

enable (disable} flush on a synchronous line after
every write (2},

use application mode (use line mode) on a syn-
chronous line.

set control-character to ¢, where control-character is
erase, kill, intr, quit, eof, eol, ctab, min, or time
{ctab is used with —stappl), (min and time are
used with —icanon; see termio(7)). If ¢ is pre-
ceded by an {escaped from the shell) caret (7),
then the value used is the corresponding CTRL

S2.

STTY (1) STTY (1)

character (e.g., "d is a CTRL-d); "? is interpreted /-

as DEL and "~ is interpreted as undefined.
line i set line discipline to i {0 < i < 127).
Combination Modes
evenp or parity enable parenb and cs7.
oddp enable parenb, ¢s7, and parodd.

- parity, —evenp, or —oddp
disable parenb, and set ¢s8.

raw (—raw or cooked) enable (disable) raw input and output (no ERASE,
KILL, INTR, QUIT, EQT, or output posl processing).

nl (—nl) unset {set) icrnl, onler. In addition —nl unsets
inler, igner, ocrnl, and onlret.
lcase (—lcase) set (unset) xcase, iucle, and oleuc.

LCASE (— LCASE) same as lease (—lcase).
tabs (—tabs or tah3) preserve {expand to spaces) tabs when printing.

ek reset ERASE and KILL characters back to normal #
and

sane resets all modes to some reasonable values,

term set all modes suitable for the terminal type rerm,

where ferm is one of tty33, tty37, vt05, tn300,
ti700, or tek.
EXAMPLE
stty
produces a list of the terminal settings currently in use. To change a set-
ting, type in the command and the desired option. More than one option -
can be requested on one command line. '
stiy 300
sets your terminal to operate at 300 baud (hardware permitting).
stty < /dev/ttyl
reports the terminal characieristics of /dev/ttyl.

SEE ALSO
tabs(1), ioctl(2).
termio(7) in the UniPlust Administrator’s Manual.,

Orciober 1983 -3-

st

i
i ;
St

SYNC (1} SYNC(1)

NAME
sync — update the super block
SYNOPSIS
syne
DESCRIPTION
Sync executes the syac system primitive. If the system is to be stopped,
sync must be called to insure file system integrity. It will flush all previ-

ously unwritten systemm buffers out to disk, thus assuring that all file
modifications up to that point will be saved. See sync{2) for details.

EXAMPLE
sync

should be typed to flush all internal disk buffers, before bringing down the
system.

SEE ALSO
sync(2).

October 1983 -1-

